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INTRODUCTION

Coronary artery disease (CAD) has a complex etiology involving 
both genetic and environmental risk factors (RFs) and their 
interactions thereof. There has been a keen interest to develop 
risk prediction models that can influence, improve and 
streamline clinical management decisions and possibly even 
lead to prevention of CAD. To this effect, several risk prediction 
tools have been developed that fundamentally rely on the 
conventional RFs [1-3], with appropriate drugs targeting them. 

Although such efforts have nominally increased the average 
life span of CAD patients by three years in the United States 
of America [4], nearly 15% of the subjects who are classified 
as low risk eventually develop CAD [5], fuelling the need for 
better predictive algorithms that incorporate recent discoveries 
in the genetics of cardiovascular disease. Unparalleled advances 
in genomic technologies have fostered the discovery of novel 
genetic variants associated with CAD, myocardial infarction or 
the RFs through genome-wide association studies (GWAS) [6] 
with subsequent validation of the interesting novel variants 
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ABSTRACT
Objective: Recent discoveries of single-nucleotide polymorphisms (SNPs) have spurred the development of 
risk prediction models for coronary artery disease (CAD). We sought to generate a genetic risk score (GRS) for 
CAD in a representative cohort of Asian Indians. Methods and Results: In Stage 1, 88 variants belonging to 
65 genes and the 9p21.3 locus, identified from genome-wide association studies and internal findings were 
genotyped by Taqman assay in 500 CAD patients (cases) and 500 controls. Twelve SNPs showed significant 
independent association with CAD. In Stage 2, seven out of the twelve SNPs, analyzed in 534 cases and 
534 controls, showed persistent association and belonged to two loci - 9p21.3 (rs10757278, rs2383206, 
rs10757274, rs1333049, rs4977574) and CELSR2-PSRC1-SORT1 (rs646776, rs599839). Two representative 
variants, rs10757274 (odds ratio [OR] 1.28, 95% confidence interval [CI] 1.08-1.52) and rs599839 (OR 1.33, 
95% CI 1.1-1.62) constituted our pilot GRS. Subjects in the 4th GRS quartile showed a higher risk of CAD as 
compared to the 1st quartile after adjusting for the classical risk factors (RFs) (OR 2.51, 95% CI 1.82 - 3.45, 
P < 0.001). In receiver operating characteristic analysis, the two GRS SNPs along with all the conventional RFs 
(Model 3, C = 0.837) showed better discrimination of CAD than either conventional RFs (Model 1, C = 0.766) 
or SNPs (Model 2, C = 0.576) alone (Z = −6.6046, P = 3.98 × 10−11), with 24% net reclassification of 
subjects in the intermediate risk group. Conclusion: A pilot 2-SNP GRS showed 2.5-fold higher risk of CAD 
in Asian Indians with a modest discrimination, offering scope for further improvement with the addition of 
newer genetic variants.
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across global populations [7,8]. Thus, the concept of a genetic 
risk score (GRS) that incorporates a number of genetic variants 
encompassing a wide spectrum of biological pathways are now 
established.

The specific variants and the aggregate number of markers 
incorporated in the GRS models differ across the studies, 
yielding inconsistent results. While some show modest 
improvement in the c index by virtue of the addition of genetic 
variants to the conventional RFs [9-11], others have failed to 
show a significant incremental change [12,13]. A few studies 
have reported clinically meaningful risk stratification based on 
net reclassification and integrated discrimination improvement 
(IDI) scores [10,14]. At best, the findings have been modest, 
with individual variants carrying a low power of discrimination. 
Similar studies have not been published in Asian Indians, a 
population that has high rates of CAD incidence, prevalence 
and mortality when compared to the other world populations, 
and is underscored by the presence of a strong family history 
and early onset of the disease. In this context, the aim of the 
present study was to identify and evaluate the performance of 
a number of genetic variants selected from published GWAS 
and internal discoveries of candidate gene studies, followed by 
validation of the results in independent datasets selected from 
the Indian Atherosclerosis Research Study (IARS).

Materials and Methods

The participants were selected from the IARS cohort, enrolled 
from May 2004 to December 2011. An overview of the IARS 
study design has been published [15]. Briefly, the IARS is an 
ongoing epidemiological study with an objective to investigate 
the genetic factors and biomarkers against a backdrop of the 
conventional RFs associated with CAD in Asian Indians living in 
India. The IARS cohort comprise of proband (index cases) and 
their family members having a strong history of cardiovascular 
disease as well as healthy community-based controls, matched 
for age and gender to the proband and without a positive family 
history of cardiovascular disease. Recruitment of cases and 
controls is based on predefined inclusion/exclusion criteria, with 
age at onset ≤60 years for men and ≤65 years for women. CAD 
patients (cases) showed clinical evidence of stable angina or 
myocardial infarction diagnosed through coronary angiography 
and electrocardiogram (ECG) and treated with standard 
medication or invasive procedures such as percutaneous 
coronary intervention or bypass surgery. Control subjects were 
clinically asymptomatic and showed normal ECG readings. 
All participants provided a voluntary informed signed consent. 
The IARS protocol was approved by the institutional ethics 
committee and follows the guidelines of the Indian Council of 
Medical Research on bioethics [16].

All study participants provided a fasting sample of blood and 
urine. Details of demographics, anthropometrics, medical 
history and pedigree were recorded for each participant during 
a face-to-face interview. Prevalence of Type 2 diabetes and 
hypertension was ascertained based on self-report of physician’s 
diagnosis and/or use of prescription medication. Lipid markers, 
namely serum triglycerides (TG) and total cholesterol (TC) 

were estimated using standard enzymatic analysis in a Cobas-
Fara II Clinical Chemistry Auto analyzer (F. Hoffman La 
Roche Ltd., Switzerland). High-density lipoprotein cholesterol 
(HDL-C) concentrations were estimated after precipitating 
the non-HDL-C fractions with a mixture of 43.24 mg/dl (2.4 
mmol/l) phosphotungstic acid and 312.70 mg/dL (39 mmol/l) of 
magnesium chloride (Bayer Diagnostics, Gujarat, India). Plasma 
low-density lipoprotein cholesterol (LDL-C) concentrations 
were calculated using the Friedewald’s equation [17]. Inter-assay 
coefficient of variation for the commercial controls and normal 
serum pool ranged from 4.9% to 7.0% for TC, 6.1-7.7% for TG, 
and 7.1-12.2% for HDL-C.

Study Design and Cohort Selection

An overview of the study design, conducted in two Stages 
(training set and test set), is shown in [Figure 1]. In Stage 1, 1000 
subjects including 500 cases (IARS proband) and 500 controls, 
matched for age, gender and mother tongue/state of origin to 
the case, were selected (training set). In Stage 2, additional 1068 
subjects that included 534 cases and 534 controls, matched 
for age and gender were selected for validation of the Stage 1 
findings (test set).

Single-nucleotide Polymorphisms (SNP) Selection

We initially selected 88 SNPs from 65 putative candidate genes 
and from the 9p21.3 locus based on published reports of GWAS 
(P = 1 × 10−6-−8) [18,19] and from internal findings [20-22]. 
Selected SNPs were predominantly located in genes associated 
with lipids, inflammation and immune mechanism, thrombosis, 
cell proliferation and novel genomic loci including those with 
unknown function. Supplementary Table 1 provides a summary 
of the 88 SNPs and the associated genes selected for the initial 
analysis.

DNA was extracted by a modified salting out procedure [23] 
and quantified using Nanodrop spectrophotometer (Thermo 
Fisher Scientific, Delaware, USA). The polymorphic status 
of the 52 SNPs was established by targeted sequencing of 
around 500 bp of genomic region encompassing the SNP of 
interest on pooled DNA samples, constructed with equimolar 

Figure 1: Overview of study design, single nucleotide polymorphism 
(SNPs) marked in bold represent the two genetic risk score SNP
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concentrations of DNA sample in 20 cases and 20 controls. 
Oligonucleotide primers were designed using ‘RExPrimer’, a 
web-based tool and the regions of interest was amplified on a 
9700 polymerase chain reaction (PCR) instrument. The PCR 
products were purified by ExoSAPit digestion (Amersham 
Biosciences, Piscataway, USA), sequenced bi-directionally using 
Big Dye Terminator v3.1 sequencing chemistry and analyzed 
on a 3130XL automated genetic analyzer, with SeqScape v2.5 
software (Applied Biosystems, Foster City, USA). Details of 
the sequencing primers and the size of PCR product for the 88 
SNPs is shown in Supplementary Table 1. Around 31 SNPs were 
directly taken up for genotyping by Taqman assay without prior 
sequencing in Stage 1, while five SNPs were prioritized based 
on our own internal discoveries. After excluding five SNPs that 
were invariant during the sequencing stage, and one triallelic 
SNP, 82 SNPs were selected in Stage 1 for genotyping by Taq 
Man allelic discrimination assay on HT 7900 Real Time PCR 
instrument (Applied Biosystems, Foster city, USA). Eight wells 
with positive in-house control samples having known genotypes 
and four ‘no template control’ wells were run with each 384-well 
experiment for quantity and quality assessment. Genotypes were 
confirmed by sequencing in a random selection of 48 samples for 
each SNP, ensuring representation of all the possible genotypes.

Statistical Methods

Routine statistical analysis was carried out using SPSS v17.0 
software (SPSS Inc, Chicago, USA). Results are expressed as 
mean ± standard error for the continuous variables except 
age that was expressed as mean ± standard error of the mean. 
Chi-square test and binary logistic regression were used for 
testing the association of SNPs with CAD and estimating the 
odds ratios (ORs) and 95% confidence intervals (CIs), while 
Student’s t-test, univariate and multivariate analysis were used 
to test for the mean differences in quantitative traits between 
the cases and controls. Age, gender, diabetes, hypertension, 
smoking, TC and HDL-C were treated as covariates and 
appropriately adjusted for during analysis. SNP Stats, an 
online software, was also used to estimate the allele frequency, 

genotype frequency, hardy weinberg equilibrium (HWE) and 
the association of genotypes and haplotypes with CAD [24].

The ‘PredictABEL’ package version 1.2 in ‘R’ statistical software  
(http://www.genabel.org) was used to assess the performance 
and utility of the various risk-prediction models that included 
the conventional RFs and SNPs [25]. GRS was generated using 
either the additive allele count method where the number of 
risk alleles carried by an individual for each SNP (0, 1 or 2) 
was simply counted (unweighted GRS - GRSUW) or using the 
β-coefficient values derived from binary logistic regression 
analysis (weighted GRS - GRSW). Correlations among the 
SNPs within a gene cluster (linkage disequilibrium [LD]) was 
estimated by Haploview v3.32 software (http://www.broad.mit.
edu/mpg/haploview/) [26].Bonferroni correction was done using 
SNPassoc program in “R” package [27].

Accuracy of the discrimination was assessed based on area 
under curve the receiver operating characteristic curve 
(AUC or c index) for the three different models: Model 1, 
conventional RFs alone; Model 2, GRS alone; and Model 3, 
conventional RFs (Model 1) and GRS (Model 2) combined. 
Age, gender, diabetes, hypertension, smoking and log values 
of TC, TG, HDL-C and LDL-C were treated as conventional 
RFs in Model 1. Body mass index, waist circumference, hip 
circumference and waist-hip ratio did not show a significant 
association in regression analysis and were, therefore, not 
included for further analysis. Three types of analysis were 
performed based on the combination of the conventional 
RFs used in Model 1. In analysis 1, all of the above RFs 
were included; in analysis 2, lipids were excluded whereas, 
in Model 3, only diabetes, hypertension and smoking were 
considered. Significant difference in the AUCs between 
Model 1 and Model 3 was calculated using the De Long 
method [28]. The net reclassification index (NRI) and IDI 
scores were calculated by comparing the AUC generated 
under the different risk prediction models [11]. Calibration 
of the prediction models was tested using Hosmer–Lemeshow 
test [29].

Table 1: Clinical profile of Stage 1 and Stage 2 cohorts
Variables Stage 1 (n=1000) P value Stage 2 (n=1068) P value

Cases Controls Cases Controls

Age, years 48.5±0.3 48.6±0.3 0.71 51.6±0.4 51.5±0.4 0.97
Hypertension n (%) 266 (53.2) 76 (15.2) <0.0001 293 (54.9) 86 (16.1) <0.0001
Diabetes n (%) 228 (45.6) 67 (13.4) <0.0001 225 (42.1) 102 (19.1) <0.0001
Smoking n (%) 190 (38.1) 106 (21.3) <0.0001 216 (40.4) 126 (23.6) <0.0001
Systolic BP, mmHg 122.8±0.8 124.9±0.8 0.067 123.5±0.8 127.2±0.8 0.001
Diastolic BP, mmHg 80.3±0.5 82.3±0.5 0.001 80.1±0.4 81.7±0.4 0.008
FBS, mg/dL (mmol/L) 120.5±2.7 (6.68±0.14) 97.2±2.4 (5.39±0.13) <0.0001 127.5±2.5 (7.07±0.13) 106.2±2.0 (5.89±0.11) <0.0001
BMI, kg/m2 26.0±0.2 25.5±0.2 0.027 25.9±0.2 25.5±0.2 0.10
WHR 0.95±0.004 0.94±0.003 0.16 0.95±0.004 0.96±0.003 0.003
WC, cm 90.2±0.5 89.4±0.5 0.26 91.4±0.5 89.7±0.5 0.014
TC, mg/dL (mmol/L) 151.8±1.9 (8.42±0.10) 176.9±1.9 (9.81±0.10) <0.0001 152.8±1.7 (8.48±0.09) 176.7±1.7 (9.80±0.09) <0.0001
TG, mg/dL (mmol/L) 167.5±4.4 (9.29±0.24) 162.0±4.4 (8.99±0.24) 0.37 164.0±4.7 (9.10±0.26) 171.7±4.8 (9.52±0.26) 0.25
HDL-C, mg/dL (mmol/L) 37.4±0.4 (2.07±0.02) 42.0±0.4 (2.33±0.02) <0.0001 37.5±0.4 (2.08±0.02) 38.7±0.4 (2.14±0.02) 0.034
LDL-C, mg/dL (mmol/L) 81.0±1.6 (4.49±0.08) 103.7±1.6 (5.75±0.08) <0.0001 82.4±1.4 (4,57±0.07) 105.7±1.5 (5.86±0.08) <0.0001
Statins n (%) 368 (73.6) – – 404 (75.7) – –

Data are mean±SE or n (%), BMI: Body mass index; BP: Blood pressure; HDL-C: High-density lipoprotein cholesterol, LDL-C: Low-density lipoprotein 
cholesterol, SE: Standard error, WC: Waist circumference, WHR: Waist hip ratio, FBS: Fasting blood sugar
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Results

Clinical Characteristics of the Study Population

The clinical profile of study participants in Stage 1 and Stage 2 
is shown in [Table 1]. The mean age of the cases and controls 
were comparable. Cases showed a higher frequency of diabetes, 
hypertension and smoking when compared to the controls. 
Statin usage was recorded only among the cases while data were 
unavailable for 1 case and 30 control subjects

Building a GRS for CAD

Of the 88 SNPs in the initial list, one was tri-allelic (rs3091244). 
Five SNPs were found to be non-polymorphic at the sequencing 
stage. Of the remaining 82 SNPs that were investigated in Stage I, 
11 SNPs were not in HWE in the controls (P < 0.05), while 13 
SNPs showed a low minor allele frequency (MAF) (8 SNPs with 
MAF 0.01 to 0.05 and 5 SNPs with MAF 0.06 to 0.09) and were 
therefore not considered for further analysis. A total of 58 genetic 
variants (MAF >0.10) were finally analyzed for association 
with CAD in Stage 1. An overview of the study design and the 
significant SNPs in the two stages is depicted in [Figure 1].

Stage 1 Analysis

Out of 58 SNPs, 12 SNPs showed a significant association with 
CAD. Five of them belonged to the well-established CAD risk 
locus on the 9p21.3 region (rs1333049, rs2383206, rs10757278, 
rs10757274, rs4977574), two belonged to the CELSR2-PSRC1-
SORT1 gene cluster on 1p13.1 locus (rs646776, rs599839), while 
there was one SNP each of CXCL12 (rs501120), SLC22A3-
LpPLA2-LPA gene cluster (rs3127599), CNNM2 (rs12413409), 
SMAD3 (rs17228212) and BCAP29 (rs10953541). Table 2 
provides the details of the 12 SNPs, their associated genes/loci, 
MAF, allele and genotype frequencies and the associated ORs.

Stage 2 Analysis

In Stage 2, seven out of the twelve significant SNPs from Stage 
1, 5 from the 9p21.3 locus (rs1333049, rs2383206, rs10757278, 

rs10757274, rs4977574) and two from CELSR2-PSRC1-
SORT1 cluster (rs646776, rs599839) retained significant 
association with CAD. Since there was a strong correlation 
(LD) among the variants in the 9p21.3 and CELSR2-PSRC1-
SORT1 loci, one best representative variant from each cluster 
i.e. rs10757274 (OR 1.7, 95% CI 1.19 -2.35) from the former 
and rs599839 (OR 1.51, 95% CI 0.94 - 2.43) from the latter 
were selected and constituted the pilot GRS. Mean GRSUW 
(2.63±0.04 vs. 2.39±0.043) and weighted GRSW (0.845±0.012 
vs. 0.770±0.01) were significantly higher in cases than in the 
controls (P < 0.0001).

Table 3 shows a summary of the AUC values, the NRI and 
the IDI scores for the different combination of conventional 
RFs in Model 1, Model 2 and Model 3 along with the 
corresponding NRI and AUC values while [Figure 2] depicts 
the ROC plot for Model 1 (all RFs), Model 2 (2 GRS SNPs) 
and Model 3 (conventional RFs + SNPs), respectively. There 
was 24% net re-classification of subjects in analysis 1 where 
the Model 1 included age, gender, diabetes, hypertension, 
smoking and the log-transformed lipid levels, namely TC, 
TG, HDL-C and LDL-C. However, the increment in the AUC 
from Model 1 to Model 3 was relatively better for analysis 
2, which included age, gender, diabetes, hypertension and 
smoking (excluding lipids) (0.112), as compared to analysis 
1, which included all the common RFs (0.071) or analysis 
3, which included only diabetes, hypertension and smoking 
(0.105). Overall, the net reclassification of subjects was better 
for analysis 1 (NRI = 0.2397) when compared to analysis 2 
(NRI = 0.1442) or analysis 3 (NRI = 0.0974), respectively. 
The predictive probabilities generated using Model 3 showed 
better distribution when compared to either Model 1 or Model 
2 across all the three types of analysis and the data for analysis 
1 is shown [Figure 3a-c].

LD Analysis of 9p21.3 Common Variants and CELSR2-
PSRC1-SORT1 SNPs

We have previously reported the presence of a strong pair-wise LD 
among the five variants in the 9p21.3 locus (r2 0.93-0.99) [30] and 
the two SNPs in the CELSR2-PSRC1-SORT1 cluster (r2 0.98) [31].

Table 2: Allelic and genotype frequency of SNPs significantly associated with CAD in Stage 1
SNP ID Gene name Locus SNP* Allele frequency Genotype† OR

(95% CI)1 2 1 1 1 2 2 2

rs1330049 ANRIL 9p21.3 C>G 0.54 0.46 0.28 0.52 0.20 1.44 (1.20-1.72)
rs2383206 ANRIL 9p21.3 G>A 0.56 0.44 0.30 0.52 0.18 1.51 (1.26-1.80)
rs10757278 ANRIL 9p21.3 G>A 0.56 0.44 0.29 0.53 0.18 1.36 (1.14-1.62)
rs10757274 ANRIL 9p21.3 G>A 0.54 0.46 0.28 0.52 0.20 1.45 (1.22-1.73)
rs4977574 CDKN2A/2B, ANRIL 9p21.3 G>A 0.54 0.46 0.28 0.52 0.20 1.43 (1.20-1.70)
rs646776 CELSR2-PSRC1-SORT1 1p13.1 T>C 0.74 0.26 0.54 0.38 0.08 1.29 (1.06-1.58)
rs599839 CELSR2-PSRC1-SORT1 1p13.1 A>G 0.73 0.27 0.55 0.37 0.08 1.33 (1.09-1.63)
rs501120 CXCL12 10q11.21 T>C 0.64 0.36 0.43 0.43 0.14 1.21 (1.00-1.45)
rs3127599 SLC22A3-LpPLA2-LPA 6q21-26 C>T 0.79 0.21 0.62 0.33 0.05 1.25 (1.01-1.55)
rs12413409 CNNM2 10q24.32 G>A 0.81 0.19 0.66 0.30 0.04 0.46 (0.24-0.90)
rs17228212 SMAD3 1q41 T>C 0.88 0.12 0.78 0.21 0.02 1.33 (1.03-1.72)
rs10953541 BCAP29 15q22.33 C>T 0.84 0.16 0.71 0.26 0.03 0.73 (0.55-0.97)

*Underlined allele denotes minor allele. †All SNPs were in hardy-weinberg equilibrium, CAD: Coronary artery disease, CI: Confidence interval, 
ID: Identification, OR: Odds ratio; SNP: Single-nucleotide polymorphism
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CELSR2-PSRC1-SORT1 Gene Cluster and Lipid Levels

There was a significant association of SNPs rs599839 (A>G) 
and rs646776 (T>C) with TC and LDL-C levels in the cases 
in Stage 1 and in both cases and controls in Stage 2. Here, 
the AA or TT homozygote was associated with significantly 
higher lipid levels than either GG or CC, while AG or TC 
heterozygote showed intermediary levels [Table 4]. Age, gender 
and statins were used as covariates in the multivariate analysis.

Effect of Statins on Plasma Lipid Levels

About statin usage, more than 70% of CAD patients were 
prescribed statins while none of the controls either in Stage 1 
or in Stage 2 were on the drug. As expected, the mean levels of 
TC and LDL-C was higher in the non-statin group as compared 
to those on statin medication as shown in the supplementary 
[Table 2].

Discussion

Genetic risk models can augment the power of the conventional 
RFs to identify suitable ‘high-risk’ candidates for aggressive 
therapy. Using a two-stage study design, from the initial panel of 
88 SNPs, we identified seven SNPs to be significantly associated 
with CAD. Further, two representative SNPs, rs10757274 and 
rs599839, one each from the 9p21.3 locus and the cholesterol 
locus, respectively, constituted our pilot GRS. The use of 
two independent datasets, one for training and the other for 
validating the initial findings, is a recommended method for 
assessing the performance of a new biomarker/algorithms for 
risk stratification [32].

The genetic variants used in the construction of a risk 
model can play a critical role in risk stratification. The initial 
panel of 88 SNPs was obtained from published GWAS that 
showed a genome-wide significance (P < 1 × 10−6-−8), was 
validated across independent populations and performed well 
in meta-analysis [8,19,33]. A few SNPs (rs6046, rs5128 and 
rs10757278) were also included from internal discovery [20-22]. 
Interestingly, these 88 SNPs belonged to predominantly four 
biological pathways, namely lipids and lipoprotein metabolism, 
inflammation and immune response, cell proliferation and 
thrombosis. Other pathways were endothelial integrity, 
oxidation-reduction state and apoptosis, while the exact 
function of a few novel genes (KIAA1462, MIA3, PHACTR1 
etc.) is yet to be elucidated. Nonetheless, only seven of these 

Table 3: AUC, NRI and IDI for the various risk prediction models
Model AUC, 95% CI Difference in AUC between 

Model 1 and Model 3
DeLong test 

(P value)
NRI, 95% CI

(P value)
IDI, 95% CI

(P value)

Analysis 1
Model 1 (age, gender, diabetes, 
hypertension, smoking, lipids)

0.766 (0.738-0.794) 0.071 Z=−6.605 
(P<0.0001)

0.2397, 0.1881-0.2913 
(P<0.0001)

0.1347, 0.1143-0.1550 
(P<0.0001)

Model 2 (SNPs alone) 0.576 (0.542-0.609)
Model 3 (Model 1+Model 2) 0.837 (0.813-0.861)

Analysis 2
Model 1 (age, gender, diabetes, 
hypertension, smoking)

0.678 (0.646-0.710) 0.112 Z=−7.7889 
(P=6.76×10−15)

0.1442, 0.1032-0.1852 
(P<0.0001)

0.1588, 0.1370-0.1805 
(P=0.0001)

Model 2 (SNPs alone 0.576 (0.542-0.609)
Model 3 (Model 1+Model2) 0.790 (0.762-0.817)

Analysis 3
Model 1 (diabetes, 
hypertension, smoking)

0.681 (0.650-0.713) 0.105 Z=−7.4221 
(P=1.15×10−13)

0.0974, 0.0637-0.1310 
(P<0.0001)

0.154, 0.1325-0.1756 
(P<0.00001)

Model 2 (SNPs alone) 0.576 (0.542-0.609)
Model 3 (Model 1+Model3) 0.786 (0.759-0.813)

AUC: Area under curve, NRI: Net reclassification index, IDI: Integrated discrimination improvement, CI: Confidence interval, SNP: Single-nucleotide 
polymorphism

Figure 2: Depiction of receiver operating characteristic plot for the 
three risk prediction models Model 1: Conventional risk factors (CRFs) 
alone (AUC = 0.766); Model 2: Two single nucleotide polymorphisms 
(SNPs) alone (area under curve [AUC] = 0.576); Model 3 conventional 
risk factors + SNPs combined (AUC = 0.837)
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variants emerged as significant after Stage 2 analysis - five 
variants in the 9p21.3 and two SNPs in the CELSR2-PSRC1-
SORT1 locus.

The 9p21.3 locus is one of the best-replicated regions for CAD, 
showing consistent association across different geographical 
boundaries [8]. Growing evidence from in vitro and in vivo 
studies indicate that ANRIL, a non-coding RNA located 
within this region, closely interacts with the neighboring 
tumor suppressor genes, CDKN2A and CDKN2B, and regulate 
important cellular processes such as proliferation and cell 
cycle regulation through epigenetic mechanisms [30,34]. 
Furthermore, studies including the present one have shown 
that the association of the 9p21.3 common variants with 
CAD is independent of the well-known RFs [35]. The robust 
association between rs10757274 and CAD has been previously 
demonstrated in other populations [36-38]. The CELSR2-

PSRC1-SORT1 gene cluster on 1p13.1 chromosomal region is 
also a highly replicated locus for CAD. GWAS on lipid traits [39] 
and CAD [40] provide strong evidence on the importance of this 
locus in CAD development, wherein the genetic variants appear 
to modulate risk through a well-established cardiovascular 
risk factor, namely high cholesterol [41]. We have previously 
reported that the common alleles, ‘T’ in rs646776 or ‘A’ in 
rs599839, are associated with high TC and LDL-C levels [31].

Apart from the above-mentioned variants, five other variants, 
CXCL12 (rs501120), SLC22A3-LpPLA2-LPA gene cluster 
(rs3127599), CNNM2 (rs12413409), SMAD3 (rs17228212) 
and BCAP29 (rs10953541) showed significant association with 
CAD in Stage 1 analysis. These variants were identified through 
GWAS [35,42-45]. However, none of them retained significance 
in Stage 2 analysis. Furthermore, the variants that had previously 
demonstrated significant association with CAD in our own pilot 
studies in subsets of the IARS cohort [21,22], could not be 
replicated beyond Stage 1. The probable reasons could be either 
the presence of ethnic specific association patterns since most 
of the selected variants were initially reported on Caucasians, 
modest cohort size or due to low effect size of the risk alleles.

The type and number of SNPs used to build a GRS have 
varied across different studies: <10 [14-47], between 10 
and 20 [13,11], or even >100 [12] SNPs, with no particular 
correlation between the type of SNPs included in the model 
and their performance. A GRS defined by 48 high-risk alleles 
was shown to predict Major Adverse Cardiac Events [48]. In 
the present study, although seven SNPs were independently 
replicated in Stage I and II, they were in strong LD. Therefore, 
two of the best-associated SNPs, one from each cluster, were 
included in the pilot GRS.

Although a simple addition of the risk alleles is the most 
popular method for constructing a GRS (GRSUW) [10,49], 
where equal weightage is given to each risk allele, the weighted 

Table 4: Mean difference in plasma lipid levels across 
rs599839 and rs646776 genotypes
Stage 1 (N=500) (cases only)

rs599839 – A>G AA (n=290) AG (n=177) GG (n=31) P value

TC (mg/dl) 156.06±2.93 147.94±2.74 137.10±6.12 0.027
LDL-C (mg/dl) 83.74±2.57 78.32±2.43 73.16±5.11 NS

rs646776 – T>C TT (n=287) TC (n=182) CC (n=29) P value

TC (mg/dl) 155.56±2.88 148.47±2.91 138.79±6.43 0.07
LDL-C (mg/dl) 84.01±2.58 77.70±2.39 74.14±5.42 NS

Stage 2 (N=1068) (cases and controls)

rs599839 – A>G AA (N=553) AG (N=422) GG (N=78) P value

TC (mg/dl) 167.97±1.76 162.18±2.02 154.90±3.94 0.009
LDL-C (mg/dl) 97.17±1.50 90.63±1.76 86.54±3.30 0.003

rs646776 – T>C TT (N=561) TC (N=416) CC (N=76) P value

TC (mg/dl) 167.96±1.75 162.49±2.05 152.49±3.84 0.003
LDL-C (mg/dl) 97.29±1.49 90.61±1.79 84.92±3.28 0.001

All lipid values are shown as mean±SE, SE: Standard error, LDL-c: Low 
density lipoprotein-cholesterol, TC: Total cholesterol

Figure 3: Distribution of the predicted risk probabilities in cases and controls (a) Model 1 includes the six most common conventional risk factors 
(age, gender, diabetes, hypertension, smoking, lipids) alone; (b) Model 2 includes the genetic risk score single nucleotide polymorphism (SNPs) 
alone; (c) Model 3 includes both the conventional risk factors and SNPs

bc

a
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GRS model uses β-coefficient values generated from the 
logistic regression function and gives different weightage to the 
individual SNPs [50,51]. Some studies have considered both 
the methods [14]. In the present study too we have assessed 
the performance of GRS using the unweighted and weighted 
methods and found both of them to perform well with higher 
mean values seen in the cases than in the controls. Further, 
subjects in the top GRS quartile showed > 2-fold risk of CAD 
when compared to the bottom quartile after adjusting for the 
known RFs. This is comparable to the other reports that have 
shown 1.6-2.2 times increased risk of CAD [13,46].

Arguably, statistical parameters such as c index (measure of 
discrimination of predictive model), NRI (measure of clinical 
utility) and IDI (percentage of total reclassification) have been 
widely used to evaluate the robustness of a risk-prediction 
model. We used the above metrics to estimate significant 
increase in AUCs between the standard and updated risk 
prediction models. Conventionally, the base model (Model 1) 
includes the conventional RFs. Therefore, we used different 
combinations of the six factors namely age, gender, diabetes, 
hypertension, smoking and lipids in Model 1. While the 
addition of all of the above-mentioned RFs yielded a significant 
net reclassification of around 24%, exclusion of lipids from 
Model 1 (analysis 2) showed a modest increment in AUC of 
0.112 between Model 1 and Model 3. Based on the NRI and 
IDI values, Model 1 that included all the conventional RFs was 
considered as the best predictive model in this study. Some 
studies have shown no incremental difference [13], while others 
have shown modest improvement in c statistics, particularly 
when using the weighted GRS Model [52]. In the present 
study, both NRI and IDI were statistically significant in Stage 2 
across the different combinations of the classical RFs. There 
was 24% net reclassification of subjects having intermediate 
risk in the updated Model 3 that included the two GRS SNPs 
and all the six conventional RFs. Such a modest reclassification 
implies that the SNPs selected for the GRS carry a low power 
of discrimination and association, which is an important 
consideration in a small cohort such as in the present study. 
In fact, very few studies have shown substantial improvement 
in the net reclassification of subjects [11]. A study involving a 
5-SNP GRS showed marginal improvement in the c index and 
a 28% net reclassification of subjects in the intermediate-risk 
group [14], while the REGICOR (Registre Gironi del cor) 
and Framingham Heart Study have shown up to 17.4% net 
reclassification [46]. Studies involving a prospective cohort 
could hold the key toward understanding the robustness of 
reclassification based on prevailing knowledge on the genetic 
variants associated with CAD and the traditional RFs in a 
primary clinical setting [53].

While factors such as stringent phenotypic classification 
can influence the association of SNPs, other factors such as 
sample size, risk allele frequency and the relative importance 
of the selected variants located within genes governing critical 
biological functions can influence the performance of a GRS. 
A classic example is the present study where the 9p21.3 common 
variants and the SNPs in the cholesterol locus were validated. 
Simulation studies have shown that in order to achieve a c 

statistic between 0.80 and 0.85, around 100 uncorrelated genetic 
variants with relative risk of 1.5 and MAF of 10% that explain 
~20% heritability of cardiovascular disease would be required 
for attaining a good discrimination [54]. Nevertheless, it is said 
that a higher increment in AUC score can be achieved with a 
liberal inclusion of SNPs rather than the stringent inclusion of 
only top performing SNPs [55]. There is an ongoing debate as 
to whether the available repertoire of genetic variants carries 
sufficient power of discrimination or whether the available 
statistical tools are insensitive to the effects of the small 
contributions made by these individual alleles towards the 
classification of the risk groups. The era of next generation 
sequencing technology holds great promise to unearth novel 
markers with low MAF that may escape detection in routine 
genetic analysis and thus fill the missing gaps in the heritability 
of CAD.

The strength of this study include a two-stage study design 
for the discovery and validation of the significant SNPs in a 
hitherto untested young population, (average age ~50 years), 
a matching case–control group, selection of SNPs from 
diverse biological pathways and a robust statistical analysis 
with appropriate adjustment for the potential confounders. 
However, we acknowledge certain shortcomings, such as the 
selection of discovery and validation cohort from the same 
IARS genetic pool and the construction of a pilot GRS based 
only on 2 SNPs. Although in an ideal scenario, the initial panel 
of 88 SNPs should have been genotyped on the entire cohort 
of 1034 cases and 1034 controls to enhance the likelihood of 
discovery, a 2-stage study design was adopted keeping the cost 
considerations in mind. In fact, the potential SNPs that showed 
borderline significance (rs20455, rs3127599) were eliminated 
in Stage 1 itself. Population stratification is another critical 
issue that can have confounding effect on disease association 
patterns, particularly in the people of Indian origin. Matters 
such as early human migration combined with distinct social 
boundaries, rigid endogamy practices, and evolutionary forces 
have played a critical role in building the diverse and complex 
genetic architecture of the present-day Indian population [56]. 
Such factors may pose some difficulties towards understanding 
the genetic susceptibility to complex diseases in Indians.

CONCLUSION

The 9p21.3 common variants and SNPs near the CELSR2-
PSRC1-SORT1 cluster emerged as the best genetic markers 
for CAD in our study. It is just a question of time before other 
similar robust markers are unearthed, which could lead to a 
more sensitive genetic risk prediction model. The foundation 
for building the genetic architecture of cardiovascular disease 
has now been laid with discoveries through GWAS, while the 
next generation sequencing technologies are helping to erect 
a scaffold and functional underpinnings is soon to follow. 
Hand in hand with the reduction in cost of operating these 
sophisticated platforms, accessibility to query larger and more 
diverse populations will become possible, leading to enhanced 
power to detect novel genetic elements and thereby, ushering 
in an era of personalized medical diagnosis and therapy.
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