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INTRODUCTION

Obesity and overweight conditions have risen rapidly in 
developed countries during the last half century. Currently, 
34.9% of adult US population or about 78.6 million Americans 
are obese at an estimated annual medical cost of $147 
billion in 2008 US dollars [1]. Obesity affects a significant 
number of pathologies: hypertension [2], atherosclerosis [3], 
hypercoagulability of blood [4], endothelial dysfunction [5] and 
associated increase in the risk of coronary vascular disease and 
accidents [6]. Excessive fat deposition in white adipose tissue 
(WAT) is accompanied by progressive decline in the sensitivity 
of WAT to insulin action [7,8]. When storage of additional 
calories in the WAT fails [8], pathological ectopic deposition 
of fat extends to the liver [9], pancreas [9], muscle [10], and 
kidney [11]. Excess fat deposition in these organs renders them 
also resistant to insulin action and results in excessive free fatty 
acid release from the WAT, increased hepatic glucose release, 
higher fasting glucose, and postprandial hyperglycemia [12]. 
Non-alcoholic fatty liver disease [13] and steatohepatitis [14] 
result from lipotoxic fat accumulation in the liver. Possibly the 
most damaging concomitant of obesity in developed countries is 
the progression from insulin resistance and pre-diabetes to Type-
2 diabetes (T2D). The incidence of T2D has increased from 
4.4 million or 2.4% of the US population in 1970s [15] to 29.1 

million or 9.3% of the population in 2014 [16]. Hyperglycemia 
and compensatory hyperinsulinemia [17] associated with 
insulin resistance and glucose intolerance lead to pathological 
glycation of circulating proteins and formation of advanced 
glycation end products [18]. This progression ultimately leads to 
a pancreatic beta cells secretory failure [19] and apoptosis [20]. 
Insulin-resistant and diabetic muscle has reduced capacity 
to store glycogen [21] and take up glucose [22]. Insulin 
resistance and T2D lead to endothelial dysfunction [5] and 
microvascular pathologies including diabetic retinopathy [23], 
nephropathy [24], and neuropathy [25]. At the cellular level, the 
progression from insulin resistance to diabetes is accompanied 
by oxidative stress [26] and systemic inflammation [5]. 
Treatment of these obesity- and diabetes-associated pathologies 
has engaged medical practice, burdened the afflicted individuals 
psychologically [27] and physiologically [28], and imposed a 
$245 billion health care financial burden [29].

Medicine and associated sciences dealing with the pathologies 
produced by obesity and T2D have predominantly focused on 
the treatment rather than the prevention of the two health 
conditions. Both pharmacological [30-32] and surgical [33-34] 
approaches have been used in the treatment of both obesity 
and T2D. None is completely successful without incurring 
substantial side-effects [30,35,36], including the option of 
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permanent changes to the gastro-intestinal anatomy and 
physiology. This review puts forward for consideration two 
ideas: (1) that some of the failures in addressing prevention 
of obesity and T2D are the result of incorrect characterization 
of the neuroendocrine control of feeding and regulation of 
body weight, and (2) that there is a knowledge gap in how the 
capacity of the pancreas and adipose tissue, key organs in the 
pathologies of obesity and T2D, may be modified during two 
important periods of tissue proliferation, the second trimester 
of fetal development, the pre-pubertal growth spurt, and also 
possibly during recovery from substantial weight loss.

INCORRECT CHARACTERIZATION OF THE CONTROLS 
OF FEEDING AND THE REGULATION OF BODY WEIGHT

At least three widely-held hypotheses about the regulation 
of body weight may set back the development of improved 
preventive or corrective strategies. They are (1) the view that 
regulation of body weight is homeostatic or self-correcting by 
way of negative feedbacks which may convey a false confidence 
that this mechanism will guide the body mass to a healthy set 
point; (2) the position that body weight regulation is based on 
direct negative feedback from the WAT through secretion and 
actions of adipokine leptin such that leptin reduces adiposity 
by suppressing appetite and food intake and increasing 
thermogenesis; and (3) the concept that the regulation of 
body weight depends on the integrity of leptin actions in the 
brain and is inoperative in its absence. These three premises 
are not supported by experimental data. In discussing their 
inadequacies, the following three sections propose an alternative 
physiological explanation of the sequelae of obesity and a 
weight-regulatory schema that is supported by experimental 
data.

Body Weight Regulation is a Consequence of Non-
homeostatic, Rather than Homeostatic, Feeding Controls 
and of Non-homeostatic Motivation for Physical Activity

Regulation of body weight stability entails defenses against 
its loss through compensatory adjustments in feeding, energy 
expenditure through thermogenesis and physical activity. 
A prerequisite for a homeostatic regulation of body weight 
would be the ability to sense calorie deficits generated by food 
restriction or energy expenditure of physical activity, and energy 
gain through calories eaten. There is ample evidence that 
within the context of daily meal-to-meal eating and episodes 
of physical activity, humans do not have the ability to track 
calories that are eaten, missing, or expended. Calories missing 
in the morning meal or expended during exercise are not made 
up during a subsequent meal [37]. The same volume of food 
is eaten when the opportunity for normal levels of activity is 
constrained [38], or when meals of different energy content 
are fed over an 11 weeks period [39]. The amount of food 
eaten is guided by food palatability [40,41], the opportunistic 
variables of quantity of food and drink offered [42,43], and social 
facilitation [44], but not the ability to track food calories [37]. 
The non-homeostatic nature of food intake leads to obesity as 
a result of exposure to “cafeteria diets” first demonstrated in 

rats given a variety of highly palatable and energy-dense foods 
in addition to their standard chow [45]. Eating is terminated 
by a sensation of fullness mediated by stretch receptors in the 
stomach wall [46,47] and relayed to the hindbrain nucleus of 
the tractus solitarius. The progressive rise in hunger during the 
inter-meal intervals reflects diminishing absorption of nutrients 
in the intestines. The intestines can sense nutrient quality [47] 
and affect the rate of gastric emptying and nutrient transit 
through secretion of several gut hormones [48].

Energy expenditure of physical activity contributes to the 
regulated weight plateau only if it is externally mandated. The 
weight of humans engaged in physically-demanding occupations 
is lower than those in more sedentary occupation [49]. Provided 
with a running wheel, rats engage in spontaneous running, and 
their weight stabilizes at a lower level than in caged animals 
not having this option [50]. Spontaneous physical activity, like 
feeding, also is structured non-homeostatically [51]. Despite 
contrary expectation, the motivation for physical activity 
increases with weight loss. Rats provided with a running wheel, 
and insufficient amount of food will increase their running 
in parallel with weight loss to the point of inanition [52]. 
Likewise, anorexic humans display a “drive to be active” [53]. 
By contrast, non-basal energy expenditure in humans declines in 
proportion to increases in adiposity [54,55] with almost complete 
inactivity in morbid obesity [56]. That this is an issue of the 
interaction between adiposity, and the motivation to move can 
be demonstrated by providing the negative external motivation. 
A foot shock at the base of a treadmill equalizes the duration and 
intensity or forced running in overweight and lean hamsters [57].

So how do non-homeostatic controls of feeding and physical 
activity achieve defended stability of body weight? They do 
so by having a functional connection within the framework of 
intermittent meal eating and movement. Episodes of intermittent 
opportunistic food intake lead to fullness and are associated with 
temporary suppression of motivation to move. Completion of 
meal processing reactivates the motivation to move and seek 
and initiate another meal. Depending on the amount of physical 
work required to obtain the resources for food, and on the quality, 
quantity and palatability of available food, the weight will stabilize 
at different regulated weight plateaus [49].

The insight that we are unable to track calories eaten or expended and 
are vulnerable to overeating palatable and abundant food while living 
in an environment largely devoid of the need for much physical work 
should guide individual decisions about how much to eat and move 
to maintain a healthy weight plateau. The additional insight that 
our motivation for physical activity depends on our adiposity should 
serve as a helpful cue to counteract non-homeostatic tendency to 
overeat and to engage in healthy levels of physical activity.

Meal-Associated Release of Gastric Leptin is the More 
Likely Contributor to Acute Energy Regulation than 
Adiposity-Associated Leptin Release from the WAT

The current and prevailing view of the weight-regulatory 
mechanism is that adipokine leptin secreted from the 
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subcutaneous WAT acts on the arcuate (ARC) and ventromedial 
hypothalamic (VMH) nuclei in a negative feedback fashion 
to influence brain circuits that inhibit feeding and increase 
energy expenditure [58-63]. This hypothesis, therefore, 
predicts reduced food intake and adiposity as fasting leptin 
concentrations rise in parallel with body fat level to inhibit 
feeding and reduce body fat. Fasting leptin [64] as well as 
insulin [65] concentration do rise in parallel with the increase 
in body fat [Figure 1]. This prompts a misinterpretation of 
a cause-and-effect relationship. This hypothesis is further 
strengthened by the observation of increased food intake 
that leads to obesity in animals [66] and humans [67] unable 
to secrete leptin, and by correction of both pathologies by 
administration of leptin [66,68]. This hypothesis has achieved 
the status of a dogma despite the following contradictory 
evidence. First, administration of a range of physiological 
and pharmacological doses of leptin to obese humans did not 
suppress their food intake or reduce their adiposity [69]. Second, 
high-fat diets [70] and cafeteria diets [45] easily induce obesity 
in animals and humans [71] despite the parallel increases in 
fasting leptin concentration and in adiposity. Moreover, third, 
and most damaging to the negative-feedback formulation of the 
hypothesis, leptin effectiveness in suppressing food intake and 
adiposity is inversely rather than proportionally related to body 
fat [72]. Finally in the daily episodic feeding circumstances, 
circulating concentrations of leptin change in response to the 
calories eaten or calories expended in exercise but bear no 
relationship to sensations of hunger, fullness, or the amount of 
subsequent food consumed [37].

An alternative hypothesis for the role of leptin in energy 
regulation is based on the evidence that in the context of 
intermittent meal eating, leptin is secreted by the chief cells in 
the gastric mucosa [73,74]. Postprandial leptin secretion and 
actions are yoked to meal-associated insulin secretion and actions 
in counter-regulatory fashion [75] [Figure 2]. The well-known 
postprandial insulin release that is sensitive to both calories 
ingested by mouth and calories infused intravenously [37] 
upregulates within 3-4 h the production and release of leptin 
[37,76]. Besides its exocrine release subsequent to its forming a 
complex with its soluble receptor to protect it from gastric acid, 
gastric leptin also reaches the systemic circulation. It does so 

by being transported to the duodenum where it binds with its 
receptor on the luminal membrane from where it is transcytozed 
to the Golgi apparatus of the duodenal enterocyte. There it 
again binds with its receptor and leaves intestinal mucosa for 
systemic circulation [77]. In opposition to the anabolic and 
parasympathetic actions of insulin to facilitate cellular uptake 
and storage of nutrients and to suppress mobilization and 
utilization of these nutrients, leptin counter regulates insulin 
actions by blocking its release [78] and blocking insulin binding 
to its receptors [79]. Leptin also increases lipolysis and lipid 
utilization [80,81] by mobilizing lipids stored in the adipose 
tissue [81], liver [82], and the muscle [83,84]. It therefore 
contributes to meal-to-meal balancing of positive energy 
balance caused by food intake, in contrast to hormones such as 
catecholamines, glucagon, cortisol, and growth hormone that 
are recruited for production of emergency fuels in response to 
negative energy balance. In addition to diurnal leptin secretion 
in response to the postprandial insulin stimulus, leptin also 
exhibits a circadian pattern of secretion [85] that is also sensitive 
to energy balance. The acrophase of circadian leptin rhythm is 
in the middle of the night [85] and increases after excess diurnal 
energy intake and declines after diurnal energy deficit [86].

The counter-regulatory relationship of leptin and postprandial 
insulin helps explain the paradoxical relationship of leptin to 
body fat as postulated by the homeostatic concept of weight 
regulation. The fasting concentrations of the two hormones 
change in lockstep with increases in body fat mass [Figure 1]. 
The increases in the fasting concentrations of both insulin and 
leptin reflect increases in tissue resistance to their actions. This 
is a consequence of the fundamental endocrine principle that 
the sensitivity of peripheral tissues to fasting concentration of 
a hormone declines in parallel with the number of hormone 
receptors on the target cell surface [Figure 3] [87] and with the 
degree of repletion of target tissues with storage fuels. As the 
amount of lipids and glycogen in the WAT [88], muscle [89,90], 
and liver [91] increases, the number of insulin receptors on 
their cell surfaces declines. At equal Km, tissue sensitivity 
to hormone increases in proportion to the number of “spare 
receptors” above the number required to elicit a biological 
response [Figure 3a] [87]. With a smaller number of receptors 
in energy-replete cells, resistance to a hormone manifests in the 
form of a higher hormone concentration required to elicit the 
biological response [Figure 3b].

The parallel rise in the fasting concentrations of insulin and 
leptin represents the cellular mechanism contributing to 
the regulation of body weight. Through increased sensitivity 
to insulin, triglyceride-depleted adipocytes, and lipid- and 
glycogen-depleted liver and skeletal muscle, are more responsive 
to insulin actions leading to heightened nutrient uptake 
and storage. Moreover, the counter-regulation of insulin by 
leptin controls the amount of fat storage in tissues and thus 
contributes to the maintenance of insulin sensitivity [80,92]. 
The pathologies observed in obesity and T2D simply reflect the 
operation of insulin and leptin above their physiological range. 
There is a need for systematic study of dietary and exercise 
conditions that reduce postprandial insulin and enhance 
postprandial leptin action. Such data could then inform and 

Figure 1: The proportional relationship between body adiposity and 
fasting concentrations of fasting serum insulin (left) and fasting serum 
leptin. The relationship refl ects progressive loss of tissue sensitivity to 
the two hormones that changes in parallel with the loss of receprors of 
the two hormones on the target cells. Data for insulin from reference 
65 and for leptin from reference 64
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guide adjustments in feeding and activity behaviors to better 
match energy intake and expenditure for the maintenance of 
healthy body weight level.

Weight Regulation Depends on the Interaction of the 
Sympathetic and Parasympathetic Components of the 
Autonomic Nervous System and Not on the Integrity of 
Leptin Signaling

Several decades ago, the autonomic component of the central 
nervous system (ANS) was recognized as the principal regulatory 
agent for balancing energy intake and expenditure [93]. Lesions 
of the ARC and VMH nuclei appeared to shift the balance 
between the sympathetic energy expending ANS division in 
favor of the parasympathetic ANS division responsible for 
over secretion of insulin and obesity [93,94] both of which 
were preventable by transection of the parasympathetic nerve 
vagus [94]. Since then, additional evidence accumulated 
that ANS also controls circadian and ultradian periodicities 
of meal taking, food processing, and controls thermogenesis 
and spontaneous physical activity [75,95]. Since the discovery 
the capacity of leptin to suppress feeding and adiposity in 
animals [66] and humans [68] unable to produce leptin, the 
research and interpretive focus has shifted from the regulatory 
role of ANS to the analysis of leptin actions on the hypothalamic 
and midbrain circuits regulating feeding and thermogenesis [96] 
with the implicit hypothesis that the integrity of the leptin 
signaling in the brain is the essential prerequisite for the 
regulation of body weight. The assumption that weight 
regulation does not operate in the absence of functional leptin-
brain interactions is not supported by facts. Animals with the 
lesions of the ARC-VMH hypothalamic targets of leptin action 
continue to defend their elevated weight and fat plateau against 
losses [97]. Furthermore, if animals are rendered obese prior 
to the damage of the VMH-ARC targets of leptin action, they 

do not overeat or over secrete insulin. Instead, they maintain 
their elevated fat plateau without hyperphagia or insulin over 
secretion [98] suggesting that removal of leptin action in the 
brain increases the level at which the body fat is maintained but 
does not abolish the defense mechanism against body weight 
loss. So while destruction of some brain targets of leptin action 
increases adiposity, it does not remove the role of the ANS in 
regulating the higher weight and fat setpoint.

The early interpretation of actions of leptin in the brain 
as a direct and proportional regulator of adiposity through 
adjustments of feeding and thermogenesis is slowly giving way 
to the recognition that within their physiologic concentrations, 
leptin and insulin suppress the reward value or salience 
of food [40,41] as well as the motivation to be physically 
active [99,100]. A decline in their concentrations increases the 
strength of these motivations. Whether the brain substrates 
over which leptin and insulin exert these suppressive effects are 
confined to nucleus accumbens in the ventral striatum [40,41] 
or also include some hypothalamic nuclei [101] remains to be 
worked out. This reinterpretation of the actions of insulin and 
leptin in the brain dovetails with the non-homeostatic control 
of feeding and physical activity in weight regulation. By virtue 
of the changes in hormone sensitivity as a function of adiposity 
[Figure 1], the withdrawal of insulin and leptin in underweight 
state facilitates feeding and physical work to procure food as well 
increases the efficiency of energy storage when the metabolic 
fuel stores are depleted and peripheral and brain sensitivity 
to the two hormones is maximal. As the compensatory eating 
and enhanced efficiency of food storage restore the WAT 
lipid stores and muscle lipid and glycogen stores, rising tissue 

Figure 2: The counter regulatory relationship between postprandial 
pancreatic insulin secretion and action and postprandial gastric 
leptin secretion and action. Insulin secretion associated with meal 
eating upregulates production and secretion of gastric leptin. Gastric 
leptin inhibits insulin secretion, its binding to insulin receptors, and 
counteracts insulin’s anabolic actions

Figure 3: The sensitivity of peripheral tissues to fasting concentration 
of a hormone declines in parallel with the number of receptors on 
the target cell surface and the degree of repletion of target tissues 
with storage fuels. As the amount of the storage fuel in the target cell 
increases, the number of insulin receptors on the cell surfaces declines. 
At equal km, tissue sensitivity to a hormone increases in proportion to 
the number of “spare receptors” above the number required to elicit 
a biological response (a). With smaller number of receptors in energy 
replete cells, resistance to a hormone manifests in the form of a higher 
hormone concentration needed to elicit the biological response (b). 
From reference 87, with permission of the Oxford University Press

b

a
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resistance to insulin and leptin actions and the suppression by 
higher concentrations of the two hormones of the motivational 
brain substrates stabilizes body weight at the pre-deprivation 
level. The ultimate understanding of the weight regulatory 
mechanism will require a shift from the current preoccupation 
with leptin action on hypothalamic circuits to the analysis of 
the role of ANS in balancing parasympathetic and sympathetic 
controls over secretion insulin and leptin and their actions on 
metabolism.

HOW TO INFLUENCE THE PHYSIOLOGY IN ORDER TO 
PREVENT THE PATHOLOGY

The obvious solutions to avoiding the pathologies that result 
from overeating and obesity and that lead to T2D would require 
implementation of social policies to reduce easy availability of 
highly palatable foods and to impose requirements for greater 
physical work. Obviously, such utopian plans will not be feasible 
in open-market democratic societies. That it can be achieved in 
the context of a totalitarian society experiencing food shortages 
is illustrated by the example of Cuba, where food intakes, body 
weights, and pathologies associated with obesity and T2D 
were minimized through reduced access to food and increased 
physical work requirements [102].

An alternative to pharmacological and surgical treatments of 
obesity - and T2D-associated pathologies would be to close the 
knowledge gap on how body fatness and pancreatic beta cell 
capacities could be influenced during developmental growth. 
The most damaging pathologies of obesity in adulthood are 
the result of exceeding the capacity of the adipose tissue 
for fat storage which leads to ectopic fat accumulation and 
lipotoxicity in the liver, pancreas and other tissues [103]. The 
most damaging pathologies of adult T2D are the consequence 
of hyperglycemia and compensatory hyper-insulinemia leading 
to progressive apoptosis of pancreatic beta cells. There is a lack 
of knowledge whether modifications of nutrition and exercise 
could epigenetically modify the proliferative capacity of 
pancreatic beta cells and WAT adipocytes to resist the damage 
inflicted by overeating and excessive storage of nutrient energy. 
The likely windows of opportunity for epigenetic modification 
of these two tissues include the periods of rapid cellular 
proliferation during the second trimester of intrauterine growth 
and during the pre-pubertal growth spurt [104]. It is not clear 
why the negative energy balance during pregnancy generated 
by dietary restriction and exercise produces opposite effects. 
Dietary restriction during later stages of pregnancy reduces 
overall fetal growth and organ size [105-109]. Offspring 
subjected to intrauterine growth retardation have reduced 
pancreatic β cell mass [105-108], increased fasting insulin, 
reduced glucose tolerance [108], and increased hepatic insulin 
resistance [109]. On the other hand, exercise energy expenditure 
during pregnancy which also reduces overall offspring growth 
and body fat measured at birth [110,111], at 1-year of age [110] 
and at 5 years of age [111] affects glucose tolerance and insulin 
sensitivity in the opposite way. Infants of exercising mothers 
weight about 6-7% less than of non-exercising pregnant women, 
are about 7% shorter, and have 25-31% less body fat [110,111]. At 

age 5, their subcutaneous skinfold measurements are 16% lower 
than those in offspring of sedentary mothers [111]. If forced to 
swim, weanling rats (which are born in less mature state than 
human infants), display reduced adipocyte cellularity [112]. 
Yet despite reduced body and individual organ size at birth as 
a result of maternal exercise during pregnancy, such rodents 
in adulthood display improved glucose tolerance [113-115], 
and systemic insulin sensitivity measured by hyperinsulinemic 
hyperglycemic clamp [114]. Why energy restriction during 
pregnancy by dietary and exercise means produce opposite 
results is not known. Nor is it known why children of obese 
mothers, as well as children of mothers experiencing dietary 
restriction during pregnancy, experience increased risk of insulin 
resistance and T2D [116]. Clearly, this is an area in need of 
systematic research to increase the understanding how exercise 
and diets may affect pancreatic and WAT development.

Another window of opportunity for potential epigenetic changes 
in body composition and pancreatic beta cell capacity may be 
the period during maintenance of, and recovery from, diet-
induced weight loss. Rats exposed to exercise during weight-loss 
maintenance display reduced rate of weight regain during ad 
libitum re-alimentation [117]. Leptin treatment during weight-
loss maintenance in humans reduces hunger and increases 
thermogenesis [118]. Leptin treatment during weight loss 
maintenance reduced body fat regain in non-growing hamsters 
and repartitioned body composition in favor of lean body mass 
in growing hamsters [119]. That leptin could produce epigenetic 
changes in the brain targets of its action is seen in functional 
enhancement of the activity of brain areas involved in detecting 
the salience and rewarding value of food during fasting in 
three hypoleptinemic subjects treated with leptin [120]. The 
knowledge gap regarding whether manipulations reducing WAT 
cellularity are beneficial or increase insulin resistance as is the 
case in lipodystrophy also needs to be closed.

The ideas proposed in this review are intended to encourage 
a research focus toward (1) a better understanding of the 
mechanism of human feeding and locomotion to empower 
individuals with information on how to prevent overeating 
and excessive weight gain; (2) an understanding of the counter 
regulatory relationship between insulin and leptin in the context 
of meal-to-meal eating to produce data that could define 
optimal relationship between calories eaten and expended; 
and (3) closing the information gap regarding the influence 
of quantities and qualities of nutrients and quantity and type 
of exercise during growth periods and recovery from weight 
loss when the cellularity of adipose and pancreatic endocrine 
tissues may be sensitive to epigenetic modification. This type 
of research would augment the understanding of physiology 
and reduce the burden of the pathological consequences of 
obesity and T2D.
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