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ABSTRACT
Gastric malignancies are currently the third leading cause of cancer-related deaths 
worldwide. Several classification proposals have been made, initially morphological 
and currently molecular, with the latter aiming to integrate neoplasms with specific 
molecular and prognostic characteristics. The most recent and widely disseminated 
one subdivides them into 4 groups: EBV-positive adenocarcinomas; adenocarcinomas 
with high microsatellite instability; adenocarcinomas with chromosomal instability; and 
genomically stable adenocarcinomas. The objective is to achieve better classification and 
consequently greater definition in risk stratification, treatment, and prognosis. The high 
costs involved in the genomic and molecular analyses necessary for complete molecular 
classification, especially for chromosome instability and genomically stable subtypes, are 
certainly still limiting factors for the dissemination of molecular classification and the 
understanding of the expected behavior for each of them.

ARTICLE HISTORY
Received: 22-Feb-2024, Manuscript 
No. JMOLPAT-24-128034;  
Editor assigned: 26-Feb-2024, PreQC 
No. JMOLPAT-24-128034 (PQ); 
Reviewed: 12-Mar-2024, QC No. 
JMOLPAT-24-128034;  
Revised: 19-Mar-2024, Manuscript 
No. JMOLPAT-24-128034 (R); 
Published: 26-Mar-2024

Keywords
Gastric adenocarcinoma; Molecular 
classification; Neoplasm; Epstein 
barr virus; Chromosomal instability

Introduction
Gastric malignancies is the third leading cause of can-
cer-related deaths worldwide, with adenocarcinomas 
accounting for approximately 90% of cases [1]. Ac-
cording to the American Cancer Society, an estimated 
26,890 new cases of gastric malignancies are expect-
ed in the United States in 2024 [2]. Over the years, 
various classification proposals for gastric adenocar-
cinomas have been put forward, each with its own 
particularities and justifications. These proposals 
have evolved from purely morphological characteris-
tics in the past to include Immunohistochemical fea-
tures and, more recently, molecular characteristics.

Literature Review
One of the most widespread classifications of gastric 
adenocarcinomas is the Lauren classification, which 
is purely morphological, easily reproducible, and pro-
vides relevant epidemiological and prognostic infor-
mation. Subsequent analyses seeking to understand 
and correlate it with potential carcinogenesis mech-
anisms, biological markers, and responses to chemo-
therapy regimens have developed over the years [3]. 
Currently, numerous studies are underway to detect 
specific molecular alterations that allow the classifi-
cation of gastric neoplasms into detailed, notably mo-
lecular, patterns, aiming for increasingly personalized 

therapeutic proposals.
In its latest update of the classification of gastrointes-
tinal tumors, the World Health Organization (WHO) 
emphasizes a broader morphological classification, 
separating adenocarcinomas by more detailed cy-
toarchitectural characteristics. Consideration is also 
given to the molecular classification proposed by The 
Cancer Genome Atlas (TCGA) [4], which divides ad-
enocarcinomas into 4 different groups: Epstein Barr 
Virus associated adenocarcinoma (EBV+), High Micro 
Satellite Instability (MSI-H), Chromosome Instability 
(CIN), and Genomically Stable (GS). The goal of this 
proposal is to unify neoplasms that share specific 
minimal molecular and/or genetic alterations and 
then seek adjustments to treatment and prognosis 
accordingly.
Technological advancement has made it possible 
to conduct thorough analyses of DNA alterations in 
cells and propose multiple mechanisms to explain 
them beyond the action of biological agents such as 
Helicobacter pylori. In colorectal, endometrial, and 
gastric neoplasms, one of the most researched mech-
anisms is the DNA Mismatch Repair (MMR) system. 
This system is responsible for checking the sequence 
of nitrogenous bases during DNA replication, seeking 
to identify errors for correction or induction of apop-
tosis to critical changes, thereby reducing the number 
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of errors accumulated in cellular replication.
Regarding neoplasms related to infections, identifying 
the direct association of the Epstein Barr Virus (EBV) 
with a group of adenocarcinomas with specific genetic 
and epigenetic alterations is important because they 
exhibit a less aggressive biological behavior than their 
Chromosomal Instability (CIN) and Genomic Stability 
(GS) molecular counterparts, as well as a satisfactory 
response to immunotherapy. The most recent system-
atic review published on the topic presents adjusted 
frequencies of subtypes with rigorous methodology 
and meta-analysis validating the correlation between 
EBV+ subtypes with male sex and MSI-H with female 
sex [5].
The consolidation of knowledge in this area would 
enable a better understanding of carcinogenesis path-
ways and provide a basis for the subsequent develop-
ment of therapeutic targets or specific chemotherapy 
regimens for each molecular subtype. 
Molecular classifications of gastric adenocarci-
nomas
The two main molecular classifications of gastric ade-
nocarcinomas are those proposed by The Cancer Ge-
nome Atlas Program (TCGA) [6] and Asian Cancer Re-
search Group (ACRG) [7]. In 2019, the WHO began to 
consider this classification, which uses advanced meth-
ods of in situ hybridization and PCR to distinguish the 
4 groups.
Currently, due to the limited availability of molecular 
methods and the high cost of disseminating this sub-
classification, some centers opt for alternative, low-
er-cost methods. The ACRG's proposal serves as an al-
ternative that provides prognostic considerations and 
classifies gastric adenocarcinoma into Micro Satellite 
(MSI) unstable tumors, Micro Satellite Stable with Ep-
ithelial-to-Mesenchymal Transition type (MSS/EMT), 
Micro Satellite-Stable TP53 active (MSS/TP53+), and 
Micro Satellite Stable TP53 inactive (MSS/TP53) [7].
There are still other proposals for immunohistochem-
ical evaluation of these neoplasms as indirect assess-
ment of phenotypes resulting from the most common 
molecular alterations or even their use as a screening 
method for potential beneficiaries of personalized 
therapeutic regimens. What exists as a common point 
in the proposed classifications is mainly the individual-
ization of EBV+ and MSI-H adenocarcinomas.
Microsatellite instability and gastric adenocarci-
nomas
MSI is defined as the malfunction of repair proteins in 
the gene transcription sequence derived from a con-
ventional DNA strand, resulting from genomic instabil-
ity. This alteration arises from the failure to correct any 

errors during gene transcription and the development 
of an error-prone DNA region, usually in a similar rep-
etition of nucleotides (tandem repeats), known as mi-
crosatellites. 
This disorder causes a misalignment of the protein 
produced after the action of DNA polymerase. When 
these errors accumulate in large numbers, there is the 
potential for the development of a neoplasm with Mi-
cro Satellite Instability High (MSI-H). MSI-H neoplasms 
typically present a better prognosis when diagnosed 
at early clinical stages (American Joint Committee on 
Cancer (AJCC) stages I and II). Microsatellite instability 
has a heterogeneous distribution in populations, and in 
gastric neoplasms, it correlates with the Lauren histo-
logical subtypes, being more frequent in intestinal-type 
adenocarcinomas, less common in diffuse types, and 
rarely in mixed types.
Extensively studied in colorectal and endometrial ade-
nocarcinomas, which are the most common manifesta-
tions of Lynch Syndrome (LS), the origin of inefficiency 
by somatic (acquired) or germline (inherited) path-
ways is of interest in determining which carcinogenic 
pathway the neoplasm is related to. Although LS may 
initially manifest with gastric neoplasms, this finding is 
rarer when compared to colorectal and/or gynecolog-
ical neoplasms. In gastric neoplasms, the origin of the 
deficiency in DNA repair proteins is mainly due to the 
hypermethylation process of the MLH-1 gene promot-
er. As a consequence, there is inactivation and disrup-
tion of its DNA strand checking process along with its 
homologue, PMS-2. Other genes may also undergo al-
terations, having been researched in other molecularly 
similar cancers, such as hMSH2, hMLH1, PMS1, PMS2, 
hMSH6, and hMSH3 genes.

Epstein-barr virus infection and gastric adeno-
carcinomas
Cellular alterations resulting from EBV infection have 
long been better understood in the development of 
lymphoid neoplasms, particularly Hodgkin's lymphoma 
and post-transplant lymphoproliferative disorders [8]. 
With consistent reports since the 1990s and the detec-
tion of EBV by molecular methods in neoplastic tissue 
and cells adjacent to the tumor (precursor lesions), the 
association with poorly differentiated neoplasms with 
exuberant lymphoid stroma (lymphoepithelioma-like 
carcinoma) and the carcinogenic mechanisms in glan-
dular epithelial cells were proposed and validated. De-
spite a lesser understanding of the process in gastric 
epithelial cells, the genetic and epigenetic effects found 
are similar to corresponding nasopharyngeal carci-
nomas, and can be considered well-established [9]. A 
more prevalent characteristic in EBV-positive adeno-
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Another point of interest for EBV-positive adenocar-
cinomas is recent studies correlating the expression 
of apoptosis-inducing ligands [15]. Like adenocarci-
nomas with microsatellite instability, they have great 
potential to be treated with immunotherapy. The main 
alterations caused by EBV in gastric cancer are methyl-
ation of cytosine-guanine islands (CpG islets); assem-
bly of programmed cell death ligands (PD-L1/2), and 
mutation of the PIK3CA gene. Apparently, there is no 
concurrent mutation in the P53 gene in the EBV-related 
oncogenic cascade.
The impact of EBV infection on overall survival is still 
a topic of debate. Most studies conducted were retro-
spective and had a low level of evidence for definitive 
conclusions. These tumors represent a relatively small, 
albeit relevant, subgroup.
Genomic stability and gastric adenocarcinomas
The subgroup termed Genomically Stable exhibits 
sporadic molecular alterations and is present in small 
quantities, making characterization difficult [16]. How-
ever, this molecular subtype is enriched with the dif-
fuse Lauren histological type (40 out of 55 cases stud-
ied by TCGA, 73%) and mutations in genes related to 
cell mobility and adhesion, particularly in RHOA and 
CDH1 genes, as well as fusions involving CLDN18, ARH-
GAP, and RHOA genes [16,18].
Clinically, GS gastric carcinomas tend to be diagnosed 
at younger ages compared to other groups, with a 
median age of 59 years according to the TCGA study 
(p=0.0000004) [6]. They present a worse prognosis, 
lower recurrence-free and overall survival, and greater 
chemoresistance.
Through TCGA analysis, mutations in the RHOA gene 
were identified in 16 cases, enriched in this molecu-
lar subtype (15% of GS cases, p=0.039). In vivo studies 
have shown that RHOA is involved in cell adhesion and 
epithelial cell contractility during development and 
exhibits oncogenic transformation capacity through 
STAT3 activation via its effectors. Besides mutations, 
potential fusions involving the RHOA gene were iden-
tified, with the GPX1 and RBM6 genes, still without es-
tablished biological effects [6,16-19].
Sequencing data demonstrated 13 cases of fusions in-
volving the CLDN18 gene in the TCGA cohort. CLDN18 
is a member of the human claudin family of tight junc-
tions found in gastric epithelium [20]. The ARHGAP26 
(GRAF) gene, encoding a Gtpase Activating Protein 
(GAP) that acts in the RHO pathway and is involved in 
cell motility, was the identified partner in 11 cases, and 
the homologous GAP ARGGAP6 in 2 other cases [6,18]. 
Fusions involving the CLDN18 genes and RHOA muta-
tions were mutually exclusive in TCGA analyses.

carcinomas is the PIK3CA mutation. Found in 80% of 
these gastric tumors and approximately 50% of naso-
pharyngeal carcinomas, this mutation is an example of 
similarity in action in epithelial cells with distinct dif-
ferentiations (squamous and glandular) [10].
Considered a low-virulence virus but with the poten-
tial to be latent in about 90% of the world's population, 
EBV-related epithelial neoplasms are a hallmark in on-
cology [11]. In gastric adenocarcinomas, they account 
for about 10% of cases and present distinct therapeutic 
possibilities and prognostic significance.
Viral DNA molecules found in the cytoplasm (ep-
isomes) promote mutations in more than 200 host 
cell genes during gastric cancer development, with the 
AKT2, CCNA1, MAP3K4, and TGFBR1 genes highlighted. 
As a consequence of acting on cells as episomes, direct 
research of viral genes by molecular methods is the 
gold standard diagnostic. In gastric carcinomas, nine 
viral genes are well established: BARF0, BARF1, BcLF1, 
BHRF1, BLLF1, BRLF1, EBNA1, and LMP2A [12]. Of 
these, BARF1, BHRF1, and LMP2A exhibit oncogenic po-
tential, with the latter standing out for participating in 
the regulation of survivin protein, which grants charac-
teristics of greater cellular resistance and activates the 
DNMT3B gene, the main responsible for the high levels 
of genetic material methylation observed [12,13].
The epigenetic alterations observed as a result of 
this dysregulated methylation process have already 
been demonstrated in 216 genes that are inhibited 
(down-regulated) due to hypermethylation and 46 
hyperactivated (up-regulated) demethylated genes. 
Other genes are also silenced (knockdown), with IHH 
and TRABD standing out, which increase cellular pro-
liferation and are believed to be one of the bases of 
neoplastic development [12]. When analyzed togeth-
er, most of the detected alterations occur through the 
methylation of cytosine-guanine binding islands (CpG 
islands), subclassifying EBV-positive adenocarcinomas 
as neoplasms with a high index of Cpg Island Methyla-
tion (CIMP-H) [13,14]. In the molecular classification, 
EBV-positive and MSI-H adenocarcinomas are includ-
ed in this subgroup (CIMP-H) and are generally more 
prevalent in men, have a better prognosis, earlier diag-
nosis, with diffuse Lauren histology and lower rates of 
lymph node metastasis.
It is important to note that the methylation patterns 
triggered by EBV are broader and distinct, affecting pro-
moter and non-promoter CpG islands, presenting the 
highest levels of methylation among studies conducted 
by TCGA. A striking difference between EBV-positive 
and MSI-H adenocarcinomas is the methylation of the 
CDKN2A (p16) gene in the former and the promoter of 
MLH1 in the latter.
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Conclusion
In many oncological medical services, gastric neoplasm 
diagnoses are often oversimplified, focusing mainly on 
morphological and immunohistochemical features, 
typically categorizing adenocarcinomas. Despite fi-
nancial constraints, our group is committed to refin-
ing molecular subclassifications following TCGA and 
WHO guidelines. Motivated by scientific responsibility, 
we are exploring cost-effective alternatives to enhance 
diagnostic accuracy and treatment efficacy, aiming to 
bridge the gap between simplified diagnoses and com-
prehensive molecular profiling.
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