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Abstract 

Diabetes mellitus (DM) represents one of the greatest threats to modern global health. Diabetes 

mellitus is characterized by chronic elevation of blood glucose concentration as a consequence of 
decreased blood insulin levels or decreased action of insulin. In order to prevent or delay the onset 

of such complications, tight control of fasting and postprandial blood glucose levels is a central 

aspect of diabetes treatment. Development of new therapies that are able to improve glycemia 
management, cure diabetes, and can even protect from it, are of great interest. Metal compounds 

proposed to have the potential to elicit beneficial effect in the pathogenesis and complication of the 
disease. The idea of using metal ions for the treatment of diabetes originates from the report in 

1899. Vanadium, chromium, copper, cobalt, tungsten and zinc were found to be effective for 

treating diabetes in experimental animals. Results from long-term trials are needed in order to 

assess the safety and beneficial role of these metals as complementary therapies in the 

management of diabetes. The present review includes the therapeutic potential of some metals 

showing promising result in the treatment of diabetes.  

 

© 2012 GESDAV 

 
INTRODUCTION 

Diabetes mellitus (DM), a leading non communicable 

disease with multiple etiologies, is considered as one of 

the five leading causes of death in the world. The total 

number of people with diabetes is projected to rise 

from 171 million in 2000 to 366 million in 2030 [1]. 

DM is a clinically and genetically heterogeneous group 

of disorders, characterized by abnormally high blood 

glucose concentration. Several pathogenic processes 

are involved in the development of diabetes. These 

range from autoimmune destruction of the β-cells of the 

pancreas from inadequate insulin secretion and/or 

diminished tissue responses to insulin at one or more 

points in the complex pathways of hormone action. 

Deficient supply of insulin cause abnormalities in 

carbohydrate, fat, and protein metabolism.These 

metabolic disturbances result in acute and long term 

diabetic complications, which are responsible for 

premature death and disability [2]. 

DM is mainly classified as either insulin-dependent 

Type I or non-insulin-dependent Type II. Type I is 

characterized by immune-mediated destruction of 

insulin-producing pancreatic beta cells. Type II is 

characterized by disorders of insulin action [3]. 

Under physiological conditions antioxidant defense 

system protects the body against adverse effects of free 

radical generation. In diabetes mellitus hyperglycemia 

may depress the natural antioxidant system. Free 

radicals are generated by auto-oxidation reactions of 

sugars and sugars adducts to proteins and by auto-

oxidation of unsaturated lipids in plasma and 

membrane proteins which results in the consumption of 

antioxidant defense components. It may lead to 

disruption of cellular functions and oxidative damage 

to membranes and may enhance susceptibility to lipid 

per oxidation. Several reports indicate that 

hyperglycemia leads to oxidative stress [4-6].The level 

of lipid per oxidation in cell is controlled by various 

cellular defense mechanisms consisting of enzymatic 
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and nonenzymatic scavenging systems [7]. The 

efficiency of this defense mechanism is altered in 

diabetes [8] and, therefore, the ineffective scavenging 

of free radicals may play a crucial role in determining 

tissue injury. 

To treat DM, which has many severe complications, 

several types of insulin preparations and synthetic 

drugs have been developed and are in clinical use. 

However, there are several problems concerning the 

insulin preparations and synthetic drugs, such as 

physical and mental pain due to daily insulin injections 

[9]. Consequently, a new class of therapeutic agents is 

anticipated. It has been suggested that medicinal plants 

may provide valuable therapeutics agents in modern 

medicine and in traditional system, especially in areas 

where the modern drugs are unavailable [10]. Though 

there are numerous medicinal plants traditionally 

reported to have hypoglycemic property. Many of them 

proved to be not effective in lowering glucose levels in 

severe diabetes and reported to have side effects 

including hematological disorders, metabolic coma and 

disturbances of liver and kidney. Therefore there is a 

need to search for more effective and safe drugs for 

diabetes [11]. Researches have been shown significant 

progress in utilization of metal complexes to overcome 

the problems of diabetes mellitus. Metals and metal 

complexes have played key role in the development of 

modern chemotherapy. A number of transitional and 

other metal compounds like chromium, manganese, 

molybdenum, copper, cobalt, zinc, tungsten and 

vanadium have been proposed as possible adjuncts in 

the treatment of diabetes mellitus in vitro and in vivo 

[12,13]. 

Metal compounds induce hypoglycemia by a wide 

variety of mechanisms. Possible mechanisms of  their 

antidiabetic insulin-like effects are activation of insulin 

receptor signaling (chromium, mangesium), antioxidant 

properties (cobalt, manganese, tungstate, 

zinc),inhibition of phosphatases (vanadium), 

stimulation of glucose uptake, glycogen and lipid 

synthesis in muscle, adipose and hepatic tissues and 

inhibition  of gluconeogenesis (chromium, cobalt) or 

stimulation of the activities of the gluconeogenic 

enzymes: phosphoenol pyruvate carboxykinase and 

glucose-6 phosphatase (manganese) [14,15]. 

In recent years, interest has been growing in the 

assessment of potential insulin mimetic 

metallopharmaceuticals relying on the unique and 

characteristic properties of metal ions. The present 

review update the knowledge about therapeutic 

potential of some selected metals (chromium, copper, 

cobalt, magnesium, manganese, molybdenum, 

tungstate, vanadium and zinc) in insulin resistance and 

diabetes treatment in both animal models and clinical 

trials.  

CHROMIUM 

The most stable oxidation state of chromium, Cr (III), 

is regarded by many nutritionists as an essential 

micronutrient for humans. It is an essential element 

required for normal carbohydrate and lipid metabolism 

[16].The first suggestion that a biological Cr (III) 

compound could act as a nutritional enhancement to 

glucose metabolism was traced in 1950s by Schwarz 

and Mertz, on the basis of experiments with nutrient-

deficient rats. They suggested that brewer’s yeast 

contained a glucose tolerance factor (GTF) that 

prevented diabetes in experimental animals [17]. 

Trivalent chromium is reported to be one of the 

elements essential for treating Type II diabetes as it is 

believed to enhance insulin action [18]. 

Although the use of large doses of Cr (III) supplements 

may lead to improvements in glucose metabolism for 

type II diabetics, there is a growing concern over the 

possible genotoxicity of these compounds, particularly 

of chromium Cr (Pic) [19]. Therefore Cr (III) 

complexes with propionate [20], L-histidinate [21, 22], 

D-phenylalaninato [23], and nicotinato (niacinato or 3-

pyridinecarboxylato) [24] ligands as well as Cr (III)-

enriched yeast [25] have been proposed as safer 

antidiabetics. 

Yang et al. [23] evaluated the effects of a novel 

synthetic chromium (D-phenylalanine) 3 [Cr (DPhe) 3] 

complex on insulin-sensitivity, plasma lipid profile and 

oxidant stress in a mouse model of type II diabetes. 

Plasma glucose levels and Total serum cholesterol to 

high-density lipoprotein ratio following intraperitoneal 

insulin-challenge (1 U/kg) to obese ob/ob (+/+) mice 

treated with Cr (D-Phe) 3 (150 lg/kg/day for 6 weeks) 

were significantly lower compared to vehicle-control. 

Hepatic oxidant stress, assessed as malondialdehyde 

equivalents and protein-carbonyl content were 

significantly attenuated following Cr (DPhe) 3 

treatments. The complex also inhibited lipid-per 

oxidation in vitro, in a concentration dependent 

manner.    

Sahin et al. [26] evaluated the metabolic effects of 

chromium picolinate (CrPic) in a rat model of type II 

diabetes mellitus. Sprague-Dawley rats received a high-

fat diet (HFD; 40% of calories as fat) for 2 weeks and 

then were intraperitoneally injected with streptozotocin 

(STZ, 40 mg/kg; HFD/STZ) on day 14 with addition of 

80 μg CrPic per kilogram body weight per day. The 

addition of CrPic in the treatment lowered glucose by 

an average of 63%, total cholesterol by 9.7% and 

triglycerides by 6.6%. CrPic treatment also lowered 

free fatty acid levels by 24%, blood urea by 33%, and 

creatinine level by 25%, and reduced the severity of 

glomerular sclerosis. Histopathologic findings suggest 

that the CrPic-treated group had normal renal tubular 
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and hepatocyte appearance compared with the 

HFD/STZ-treated group. This was accompanied by a 

significant greater fall in fasting serum insulin in the 

chromium-treated group. Improvement in insulin 

sensitivity and lower glucose levels was suggested by 

Kim et al. [27] after chromium picolinate (CrPic) 

supplementation in Goto kakizaki (GK) rats.  

Chromium supplementation significantly improves 

glycemia among patients with diabetes but do not show 

any significant effect on glucose metabolism in healthy 

subjects [28]. Studies of chromium supplementation 

(1000 micrograms of Cr daily) conducted in humans 

with Type II DM for 16 weeks leads in increased 

glucose tolerance, decreased circulating insulin, fasting 

glucose, cholesterol and hemoglobin [29]. Ghosh et al. 

[30] observed a significant greater fall in fasting serum 

insulin in the chromium (200 µg trivalent chromium 

twice daily) treated Indian subjects with type 2 diabetes 

mellitus.  

Chromium picolinate (CrPic) may have a possible 

antidiabetic effect in insulin-resistant 3T3-L1 

adipocytes through the involvement of p38 Mitogen-

activated protein kinase (MAPK).Treatment with CrPic 

could partially reduce hyperglycemia and insulin-

induced insulin resistance. CrPic increased the basal 

and insulin-stimulated glucose uptake and metabolism 

as well as GLUT4 translocation to plasma membrane in 

both the control and insulin-resistant 3T3-L1 

adipocytes. CrPic also increased the basal and insulin-

stimulated p38 MAPK activation [31].The antidiabetic 

activity can be further explained by the cholesterol 

lowering ability of chromium picolinate [32]. 

COBALT  

Cobalt (Co) is considered an essential nutritional trace 

element and has therapeutic value in pharmacological 

doses. Cobalt has also been demonstrated to boost the 

effects of insulin and its action [33].Cobalt chloride 

(CoCl2) decreases the glycemia of diabetic rats by 

augmentation of GLUT-1 gene expression. The 

addition of 2 mM Co(II) in the drinking water reduced 

the glycemia of streptozotocin-induced diabetic rats by 

day 3 from 32.3 +/- 2.1 to 21.0 +/- 1.9 mM (non-

fasting).Treatment with 4 mM Co(II) was more 

effective than 2 mM Co(II) in reducing the glycemia of 

diabetic rats[34]. 

Nomura et al. [35] reported that treatment of normal 

rats with cobalt chloride (2mM Co (II) for 2 weeks) in 

drinking water did not modify blood glucose level, 

insulin level and liver glycogen however muscle 

glycogen was significantly increased. When STZ 

diabetic rats were treated with cobalt chloride, there 

was significant decline in blood glucose, no effect on 

plasma insulin and significant increase in liver 

glycogen showing no effect on muscle glycogen. 

Increase in liver glycogen of diabetic rats would be due 

to the glycogen signaling. Previously, it was 

demonstrated that glucose release via glycogen-induced 

glycogenolysis was suppressed by Co (II) in the 

perfused liver of normal rats without a STZ 

administration [36]. 

Vasudevan and McNeill [37] investigated the anti-

hyperglycemic effects of cobalt in streptozotocin-

diabetic rats. Normal and diabetic rats were provided 

with drinking water containing 3.5 mM cobalt chloride 

for three weeks followed by 4 mM for four weeks. 

Cobalt-treated diabetic rats demonstrated an enhanced 

ability to clear a glucose load compared to untreated 

diabetics. Chronic cobalt treatment decreases plasma 

glucose levels in STZ-diabetic rats and improves 

tolerance to glucose which suggested that cobalt 

modulates specific mediators and/or pathways involved 

in glucose metabolism. 

As cobalt in its single and pure form may be toxic to 

patients, therefore, various cobalt complexes has been 

suggested which can reduce the potential toxicity of 

cobalt without impacting on its effectiveness. Vaidya 

and Choure [38] observed that Co complex with 

glimepiride found to be more effective in bringing 

down the blood glucose level. Glimepiride is a 

sulphonylurea drug that is used as an 

antihyperglycaemic agent for the oral therapy of type 2 

diabetes mellitus. Streptozotocin induces diabetic rats 

were given 0.035gm/kg of drug and complexes orally 

in canulla separately and response was noted after 

subsequent intervals of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

hours. The glimepiride drug and Co complexes show a 

decrease in the blood glucose in 9 hours. Glucosaminic 

acid-cobalt chelate has been reported to be effective as 

an antidiabetic agent. Oral administration of chelate 

solution 0.4 mL at various concentrations (0.32–0.4 

g/mL) led to reduction in water intake by the diabetic 

mice after 5 days of treatment, with a subsequent 

reduction in glucose levels observed 2 weeks later [39]. 

Cobalt therapy may prove effective in improving the 

impaired antioxidant status during the early state of 

diabetes, and ascorbic acid supplementation at this dose 

potentiates the effectiveness of cobalt action [40-41]. 

Shukla et al. [42] revealed that cobalt chloride 

enhances the expression of glucose transporter isoforms 

mediated by activation of hypoxia inducible factor -1 α 

(HIF-1α) and decreases blood sugar in diabetic rats. It 

has been proposed that the glycemia-lowering was 

mediated by reductions in the rate of hepatic 

gluconeogenesis. The reduction was explained by the 

suppression of phosphoenolpyruvate carboxykinase 

(PEPCK) transcription through HIF-1α activated by Co 

(II)
 
[33].  
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COPPER 

Copper (Cu) is an ‘essential’ metalloelement and as 

such it is required for life. Copper (Cu) plays an 

important role in electron transfer reactions. Copper has 

been recognized for as a nutritional factor that 

improves glucose tolerance by enhancing in vivo 

insulin action. Copper intake in vivo has shown both 

pro-oxidant and antioxidant effects [43]. Copper 

complexes have been shown to be effective antiulcer, 

anticonvulsant, anticancer, and antidiabetic agents [44]. 

Cu deficiency results in impaired energy production, 

abnormal glucose and cholesterol metabolism, 

increased oxidative damage [45]. Walter et al. [46] 

hypothesized that the alterations in Cu metabolism 

contribute to the progression of diabetes-related 

pathologies. The pancreas is particularly sensitive to Cu 

status and changes in CuZnSOD activity can modulate 

the tolerance of pancreatic beta cells to oxidative stress 

induced diabetogenesis [47]. 

Various studies have been conducted to find the effect 

of copper (II) complexes on glucose metabolism in 

diabetic rats. Abdul-Ghani et al. [48] studied the effect 

of copper (II) complexes [bis (acetato) tetrakis 

(imidazole) copper (II), [Cu (OAc)2 (Im)4] on glucose 

metabolism in streptozotocin-induced diabetic rats. 

Intramuscular administration of various doses of Cu 

(OAc)2 (Im)4 ranging from 10 to 100 mg/kg body mass 

to overnight fasted rats decreased blood glucose levels 

in a dose-dependent manner and improved their 

tolerance for glucose. Yasumatsu et al.[49] proposed 

that copper (II)-picolinate [Cu (Pic) 2] may be a potent 

alternative antidiabetic agent. When Cu (Pic) 2 

complexes was given to STZ induced type I-like 

diabetic mice by single intraperitoneal injection, it 

exhibited a higher hypoglycemic effect.  

Copper ions are also involved in the pathogenesis of 

type II diabetes and copper chelating agent exerts a 

beneficial effect in the treatment of type II diabetes. 

The treatment with copper chelating agent 

tetrathiomolybdate decreased both serum copper ion 

and ROS levels and consequently ameliorate glucose 

and lipid metabolism in diabetic db/db mice [50]. 

Copper sulfate treatment can exert beneficial effects in 

diabetes with preservation of β-cell function by 

reducing free radicals or through reduction in glucose 

levels [51]. It also has been suggested that copper 

improves hyperglycemia by activating the 

phosphoinositide 3’-kinase (PI3-K/Akt) pathway 

leading to GLUT 4 translocation [52-53].  

MAGNESIUM 

Magnesium (Mg) is a necessary cofactor in over 300 

enzymatic reactions especially in all phosphorylation 

processes including carbohydrate metabolism. Mg 

concentration is critical in the phosphorylation of the 

tyrosine kinase of the insulin receptor as well as all 

other proteinkinases, all ATP and phosphate transfer-

associated enzymes, such as the Ca-ATPases in plasma 

membrane and endoplasmic reticulum [54]. 

The use of Mg supplements could be an alternative tool 

for the prevention of type II diabetes. Intracellular Mg 

plays a key role in regulating insulin action, insulin-

mediated-glucose uptake and vascular tone. A tendency 

for magnesium deficiency in patients with diabetes 

mellitus is well-established. Barbagallo and Dominguez 

[55] confirmed the critical importance of Mg 

metabolism in regulating insulin action and sensitivity. 

Magnesium supplementation has been proved 

beneficial as it improves insulin sensitivity as well as 

insulin secretion in patients with type II diabetes [56-

57]. Hypomagnesemia has been linked both to the 

acute metabolic and late chronic complication of 

diabetes [58]. Some metabolic studies and clinical trials 

suggested that magnesium supplementation might 

improve insulin action among nondiabetic participants 

or patients with type II diabetes [59]. 

Experimental studies have shown an adverse effect of 

magnesium deficiency on glucose-induced insulin 

secretion and insulin-mediated glucose uptake. 

Diminished levels of magnesium may decrease tyrosine 

kinase activity at insulin receptors, leading to an 

impairment of insulin signaling [60]. Balon et al. [61] 

indicated that an increased dietary Mg intake in male 

obese rats prevents deterioration of glucose tolerance, 

thus delaying the development of spontaneous non-

insulin-dependent diabetes mellitus (NIDDM). The 

male obese Zucker diabetic fatty rat, a model of 

NIDDM were administered on magnesium-

supplemented (Mg-S; 1% Mg) diet for 6 week 

beginning at 6 week of age. The rats maintained on the 

Mg-S diet had markedly lower fasting and fed-state 

blood glucose concentrations and an improved glucose 

disposal. Improved insulin-mediated glucose disposal 

and insulin secretion has been reported in magnesium 

supplemented experimental animals [62]. Song et al. 

[63] reported the protective role of higher intake of 

magnesium in reducing the risk of developing type II 

diabetes, especially in overweight women. 

Recently, various clinical trials among type II diabetic 

subjects showed that magnesium supplementation 

enhance fasting plasma glucose and insulin sensitivity 

indices in normo-magnesemic nondiabetic overweight 

people [64-65]. Guerrero-Romero and Rodríguez-

Morán [66] concluded that daily intake of magnesium 

chloride (MgCl2 2·5 g) for 3 months improves the 

ability of beta-cells to compensate for variations in 

insulin sensitivity in non-diabetic individuals with 

significant hypomagnesaemia. 
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MANGANESE 

Manganese (Mn) plays an important role in a number 

of physiologic processes as a constituent or activator of 

some enzymes which are essential for the metabolism 

of carbohydrate, amino acid and cholesterol [67]. It is 

an essential component of metalloenzymes such as Se–

cys containing glutathione peroxidase, Cu/Fe 

cytochrome C oxidase or different types of superoxide 

dismutases, all of them important in intra- and extra-

cellular antioxidant defense [68]. 

Nicoloff et al. [69] showed that decreased serum 

manganese concentration found to be associated with 

microvascular complications in diabetic children. 

Synthetic manganese porphyrins can be used as potent 

therapeutic agent in diabetes. EUK-8 is a member of a 

new class of synthetic salen-manganese compounds 

with low toxicity that possess catalytic superoxide 

dismutase, peroxidase and catalase activity that can 

inactivate superoxide and nitrogen oxides (e.g. 

peroxynitrite and nitrogen dioxide). EUK-8 

administration inhibited the adoptive transfer of type II 

diabetes and completely inhibited spontaneous disease 

progression in pre-diabetic NOD mice with established 

-cell autoimmunity [70]. 

Gluck et al. [71] observed that d-chiro-inositol (DCI) 

and manganese sulfate reduced hyperglycemia even 

more effectively (40%) as compared to control animals. 

They suggested that DCI and manganese are combined 

in vivo in the cell in the form of chelated insulin 

mediator glycans such as INS-2. In addition, both 

phosphoprotein phosphatases PP2C and PDHP, which 

activate glycogen synthesis and pyruvate oxidation, 

require manganese and/or magnesium for bioactivity. 

By these mechanisms both DCI and manganese act to 

restore normal physiological balance and their 

prolonged combined supplementation demonstrates an 

enhanced antihyperglycemic effect as compared to DCI 

alone. Binding of a divalent metal Mn (II) to an 

allosteric site on CDK4, a serine/ threonine kinase also 

activates the enzyme which is involved in signal 

transduction [72]. 

Manganese may have a common mechanism of action 

in raising the cellular concentration of cGMP, by 

eliciting a change in cyclic nucleotides, which act as a 

second messenger resulting in the modulation of the 

metabolic profiles [73]. Insulin mimetic action of 

manganese can be explained by the regulation of 

protein phosphatases, including pyruvate 

dehydrogenase phosphatase which activates glycogen 

synthesis. Manganese may also augment the activity of 

manganese-dependent enzymes by increasing their 

stability [74-75]. 

MOLYBDENUM 

Molybdenum (Mo) represents an important trace 

element involved in the structure of certain enzymes 

catalyzing redox reactions. Different chemical forms of 

molybdenum have been identified as insulin mimetic 

and being used as anti-diabetic agents. Simple 

molybdenum compounds, such as sodium molybdate 

(Na2MoO4) and complex compounds such as cis-

MoO2L2 (L ¼ maltol (3-hydroxy-2-methyl-4 pyrone)) 

were found to significantly reduce the levels of blood 

glucose and free fatty acids [76]. 

Molybdate exert insulin-like effects on the glycolytic 

pathway by increasing basal fructose 2, 6-bisphosphate 

(Fru (2, 6) P2) levels, counteract the effects of 

glucagon on Fru (2, 6) P2 concentrations and 6-

phosphofructo-2-kinase (PFK-2) activity, and stimulate 

glycolytic flux [77]. A weak insulin-like effect of 

molybdate is potentiated synergistically with H2O2, 

presumably by producing peroxocompounds. The 

combination of 1 mM molybdate and 1 mM H2O2 

induced striking stimulation of the uptake of 3-O-

methylglucose (3-O-MG) in a synergistic manner [78]. 

Peroxide of molybdate mediates their effects 

predominantly via the insulin receptor by activating 

both cytosolic protein tyrosine kinase and the insulin 

receptor tyrosine kinase. Thus normalize blood glucose 

levels in streptozotocin-induced diabetic rats [79]. 

Molybdenum may be useful for the prevention or early 

treatment of diabetic mellitus by preventing oxidation 

of lipids and protects antioxidant systems in 

experimental diabetic rats. Oral administration of 

molybdate (100 mg/kg body weight/day) to alloxan 

diabetic rats for 30 days significantly reduced the levels 

of lipids like cholesterol, triglycerides, phospholipids 

and lipid peroxidation whereas the activities of 

antioxidants like superoxide dismutase (SOD), catalase 

(CAT), glutathione peroxidase (GPx) and reduced 

glutathione (GSH) were increased [80]. 

Oral administration of Molybdenum (174 mg/kg Mo 

element for 7 weeks) decreased the hyperglycemia of 

obese mice to the levels of lean (+/+) mice. Tolerance 

to oral glucose was improved. Molybdenum treatment 

increased hepatic Glucokinase mRNA levels and 

activity, and had no, or only a mild, effect on the 

already increased L-Pyruvate kinase variables. The 

level of m RNA and activity of the gluconeogenic 

enzyme, phosphoenolpyruvate carboxykinase were 

augmented in obese mice liver which were reduced by 

Mo treatment. Insulin binding to partially purified 

receptors from liver was restored by Mo treatment. 

Molybdate inhibit protein phophotyrosine phosphatase 

and thereby stimulates cytosolic protein tyrosine kinase 

which activates several insulin bio effects via insulin 

dependent pathways [81]. 
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Ozcelikay [82] investigated the effects of oral 

administration of Na2MoO4 for 8 weeks on 

carbohydrate and lipid metabolism in streptozotocin-

diabetic rats. Na2MoO4 decreased hyperglycemia and 

glucosuria by 75% and corrected the elevation of 

plasma nonesterified fatty acids. Molybdenum mimics 

certain insulin actions in vitro. Liu et al. [83] suggested 

protective effect on pancreatic beta cells that may 

contribute to their antihyperglycemic action. Culture of 

clonal BRIN BD11 cells for 3 days with molybdate (1 

mmol/L) increased cellular insulin content and 

enhanced basal insulin release. 

Molybdenum/ascorbic acid complex showed some 

significant insulin-mimic and cardio protective effects. 

Streptozocin induced diabetic rats were treated with the 

molybdenum/ascorbic acid complex or sodium 

ascorbate to the drinking water for 6 weeks. Blood 

glucose levels and blood lipid levels were significantly 

lowered in animals treated with the complex than in 

other diabetic animals [84]. 

TUNGSTEN 

The antidiabetic properties of sodium tungstate have 

been widely reported. Sodium tungstate has shown a 

remarkable normoglycemic effect in several animal 

models of diabetes and low toxicity in diabetic and 

healthy animals [85- 86].     

Barbera et al. [87] observed that oral administration of 

tungstate (2 mg/ml sodium tungstate in 0.9% NaCI) for 

16 days normalize glycemia and glucose hepatic 

metabolism in streptozotocin-induced diabetic rats. 

Heidari et al. [88] suggested that sodium tungstate 

protects pancreatic beta cells from STZ-induced cell 

damage. Rats were supplemented with 1–1.75 mg/ml 

sodium tungstate at 1 week after STZ injection for 5 

weeks. Islets volume density, mean islets volume, and 

mass of beta cells, islets, and pancreas were 

significantly higher in sodium tungstate treated STZ-

induced diabetic rats.  

Yaghmaei et al. [89] suggested that pre-treatment with 

sodium tungstate leads to amelioration of diabetic 

complications. STZ induced diabetic rats treated by 

sodium tungstate from 1 week before STZ injection 

showed significant decrease in fasting glucose levels 

and oral glucose tolerance test, less elevation of 

glucose in diabetic-induced rats. 

Munoz et al. [85] observed that tungstate 

administration to Zucker diabetic fatty (ZDF) rats 

causes a considerable reduction of glycemia, mainly 

through a partial restoration of hepatic glucose 

metabolism and a decrease in lipotoxicity. Tungstate 

treatment of these rats induced a 42% decrease in 

serum levels of triglycerides and normalized hepatic 

glucose-6-phosphate concentrations, glycogen 

phosphorylase a activity, and phosphoenolpyruvate 

carboxykinase levels. 

Kawasaki et al. [90] indicated that tungstate 

regenerated pancreatic beta-cells population in neonatal 

STZ rats, a type II diabetes model. Tungstate 

administration enhances the insulin activity rather than 

increased insulin levels. Male Wistar rats were made 

STZ-diabetic and then treated with tungstate in their 

drinking water for 9 weeks. Tungstate-treated STZ-

diabetic rats showed a significant reduction in fluid and 

food intake, plasma glucose, triglycerides, and free 

fatty acid levels, and improved tolerance to glucose 

[91].  

Fernandez-Alvarez et al. [92] indicated that tungstate 

treatment regenerate a stable, functional pancreatic 

beta-cell population which maintains 

normoglycaemia.Tungstate treatment increases extra-

islet β-cell replication without modifying intra islet β-

cell replication rates. PDX-1 gene expression studies 

revealed that the treatment induces an increase in 

insulin-positive cells located close to ducts, as well as 

PDX-1 positive cells scattered in the exocrine tissue, 

suggesting active neogenesis. Tungstate is able to 

increase the phosphorylation state of PDX-1 through 

the activation of p38. 

Dominguez et al. [93] identified the first set of 

molecular targets through which sodium tungstate may 

exert its antidiabetic action. In primary cultured 

hepatocytes, extra cellular signal-regulated kinases 1 

and 2 (ERK1/2) was stimulated by tungstate treatment 

which contributes to tungstate-induced glycogen 

synthase (GS) activation and glycogen deposition in 

liver. 

Nakhaee et al. [94] indicated that sodium tungstate can 

ameliorate brain oxidative stress in STZ-induced 

diabetic rats, probably by reducing of the high glucose-

induced oxidative stress and/or increasing of the 

antioxidant defense mechanisms. Diabetes was induced 

with an intraperitoneal STZ injection (65 mg/kg body 

weight), and sodium tungstate with concentration of 2 

g/L was added to drinking water of treated animals for 

4 weeks. Sodium tungstate reduced the hyperglycemia 

and restored the diabetes induced changes in all 

mentioned markers of oxidative stress. However, 

catalase activity was not significantly affected by 

diabetes, while sodium tungstate caused a significant 

increase in enzyme activity of treated animals. 

STZ diabetic rats were treated orally with tungstate for 

five weeks. Treated STZ diabetic rats showed a partial 

recovery of exocrine and endocrine function, with 

lower glycemia, increased insulinemia and amylasemia, 

and increased beta cell mass achieved by reducing beta 

cell apoptosis and raising beta cell proliferation. 
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Tungstate improves pancreatic function through a 

combination of hyperglycemia-independent pathways 

and through its own direct and indirect effects, whereas 

the MAPK pathway has a key role in the tungstate-

induced increase of beta cell proliferation [95]. 

Sodium tungstate ameliorates hyperglycemia by 

showing insulin-like properties [96], by pancreatic 

regeneration which leads to restoration of beta-cell 

mass [90], by protecting the beta cells from 

streptozotocin-induced damages [88], by increasing the 

total amount and translocation of glucose transporter 

(GLUT-4) in muscle [97], and by reducing the glucose-

6-phosphatase activity, an enzyme that hydrolysis 

glucose-6-phosphate liberating glucose into the 

bloodstream [98]. Tungstate treatment also restored 

pyruvate kinase activity and fructose 2, 6 bisphosphate 

concentrations. Alterations in the hepatic glucose 

metabolism due to diabetes were almost completely 

counteracted by tungstate treatment [99].        

VANADIUM: 

Vanadium (V) is arguably the most efficacious insulin-

enhancing transition metal. Vanadium compounds 

mimics action of insulin through alternative signaling 

pathways which involve the inhibition of 

phosphotyrosine phosphatases , leading to increased 

phosphorylation of Insulin receptor substrate 1 (IRS-1), 

protein kinase B (PKB), Glycogen synthase kinase 3 

(GSK3) and Forkhead box protein O1 (FOXO1) and 

the interplay between two non-insulin receptor tyrosine 

kinases. The insulin-like potential of vanadium has 

been demonstrated in vitro and in vivo in rodents 

(where the oxidation states IV and V were found to be 

equipotent) and more recently in human diabetic 

subjects [100-103]. The earliest documented evidence 

of the insulin-like effects of the inorganic vanadium 

salt, sodium orthovanadate (Na3VO4) was published by 

Lyonnet et al. [104]. It was observed that oral Na3VO4 

administration decreased glucosuria in 2 out of 3 

diabetic patients. 

Vanadyl sulphate is widely used in both type I and type 

II diabetic animal models, where it acts as an insulin-

mimetic drug. It is well known as a complex to activate 

or inhibit many enzymes involved in carbohydrate 

metabolism inducing glucose transport, glucose 

transporter translocation, glycolysis and glycogen 

synthesis.or lipid metabolic pathways [105-107].Cam 

et al. [108] administered vanadyl sulphate in the 

drinking water (0.75 mg/ml) from 3, 10 and 17 days 

after the streptozotocin injection for 5 months. Glucose 

tolerance and adipose tissue function was normalized in 

vanadyl treated diabetic rats, supporting the concept 

that vanadyl sulphate acts as an insulin-mimetic. 

Tolman et al. [109] showed that several inorganic 

vanadium compounds, similar to insulin, stimulated 

glucose transport and oxidation in adipocytes, 

increased glycogen synthesis in the rat diaphragm and 

hepatocytes, and inhibited gluconeogenesis in liver 

cells. Meyerovitch et al. [110] demonstrated that 

chronic sodium metavanadate administration also 

lowered plasma glucose levels and enhanced basal 

hexose transport in both liver and muscle. 

Administration of vanadyl sulphate (100 mg/kg 

b.wt./day for 60 days) in streptozotocin induced 

diabetic rats caused significant lowering of serum total 

cholesterol, LDL-cholesterol, triglycerides, 

phospholipids, blood glucose, non enzymatic 

glycosylation and lipid peroxidation and improvement 

in GSH level in spleen and gastrointestinal tract [111]. 

Similarly in a clinical study by Jacques-Camarena et al. 

[112] revealed that administration of vanadyl sulfate 

(50 mg p.o. twice daily for 4 weeks) in diabetic patients 

increased triglyceride concentrations without changes 

in insulin sensitivity.  

A wide variety of vanadium containing complexes has 

also been tested as anti-diabetic treatments [113]. 

Vanadium complexes with organic ligands have proved 

to be less toxic, with improved solubility and 

lipophilicity. Vanadium complexes show insulin like 

effects by activation of several key components of 

insulin signaling pathways [114]. Bis (maltolato) 

oxovanadium [BMOV] have shown long-term in vivo 

insulin mimetic effects [115], Ammonium 

dipicolinatooxovanadium (V) [115] and arylalkylamine 

derivatives [117] have been used as a hypoglycemic 

agent in naturally occurring diabetes mellitus in cats 

and in other animal models. 

Cohen et al. [118] evaluated the effects of vanadyl 

sulphate (100 mg/day) for 3 weeks in type- II diabetic 

patients. A reduction in fasting plasma glucose and 

glycosylated hemoglobin (HbA1c) without changes in 

plasma insulin levels was noticed. The beneficial 

effects on insulin sensitivity persisted for up to 2 weeks 

following cessation of treatment. Vanadyl sulfate 

improves hepatic and muscle insulin sensitivity in type 

II diabetes mellitus. The glucose-lowering effect of 

vanadyl sulfate correlated well with the reduction in 

endogenous glucose production, but not with insulin-

mediated glucose disposal, suggesting that liver is the 

primary target of vanadyl sulfate action at therapeutic 

doses in type II diabetes mellitus [119]. 

ZINC: 

Zinc (Zn) plays an important role in the synthesis, 

storage, and secretion of insulin as well as 

conformational integrity of insulin in the hexameric 

form. Zinc was considered as a component of insulin 

crystals as earliest since 1934 [120]. 
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Zinc supplementation can ameliorate glycemic 

condition in type I and II diabetes. Zinc seems to exert 

insulin-like effects by affecting the insulin signaling 

pathway at several levels, inducing phosphorylation of 

the β subunit of the insulin receptor as well as of Akt 

and leading to inhibition of GSK-3β probably as a 

consequence of Akt phosphorylation and by reducing 

the production of cytokines, which lead to beta-cell 

death during the inflammatory process in the pancreas 

in the course of the disease [121]. 

Zinc supplementation produced a significant 

improvement in glucose disposal. Zinc seems to exert 

insulin-like effects by supporting the signal 

transduction of insulin and by reducing the production 

of cytokines, which lead to beta-cell death during the 

inflammatory process in the pancreas [121]. The action 

of zinc seemed to be related to the increased activities 

of insulin independent glucose transporters [122]. Zinc 

could act also in protecting sulfhydryl groups against 

oxidation and participate in the inhibition of the free 

radical production. Zinc induces the translocation of 

GLUT to the plasma membrane, resulting in an 

increased uptake of glucose into tissue cells, thereby 

lowering the blood glucose level. 

Higher zinc intake has also been associated with a 

slightly lower risk of type II diabetes [123]. Anderson 

et al. [124] suggested the potential beneficial 

antioxidant effects of the individual and combined 

supplementation of Zn and Cr in people with type II 

diabetes. These results are particularly important in 

light of the deleterious consequences of oxidative stress 

in people with diabetes.In a clinical trial people with 

type I diabetes mellitus receiving 30 mg of Zinc as Zn 

gluconate for three months showed decreased lipid 

peroxidation and an improvement in antioxidant status 

[125]. Further Oh and Yoon [126] also suggested that 

Zinc (50 mg zinc daily as zinc gluconate for 4 weeks) 

supplementation significantly improve fasting glucose 

as well as HbA1c in diabetic patients with shorter 

diabetic duration, poorer glycemic control, and 

marginal zinc status. 

Zinc exerts insulin like effects on the oxidation of 

glucose by both pathways, glycolytic and hexose 

monophosphate shunt. Zinc chloride administered 

either by oral gavage(210 mg mL
-1

 kg
-1

) or 

intraperitoneally (i.p.100 mg mL
-1

 kg
-1

) to STZ-diabetic 

rats led to blood glucose lowering, by 50% and 75%, 

respectively, within 3 hours [127]. Zinc complexes has 

also been tested, both in vitro and in vivo, as 

‘‘insulinomimetics’’such as Zn(II)/Carnitine Complex 

[128]; bis(maltolato)zinc(II) Complex [129]; zinc(II)-N 

-acetyl-L-cysteine complex [130], zinc(II) complexes 

with picolinamide derivatives [131].Yoshikawa et al. 

[132] proposed that the Di (1-oxy-2-pyridinethiolato) 

Zn complex Zn (opt) (2) complex with Zn(S (2) O (2)) 

coordination mode is a novel candidate for the 

treatment of type II diabetes through oral 

administration. Zn (opt) (2) improved the insulin and 

adiponectine levels in the plasma. 

Duzguner and Kaya [133] supplemented diabetic 

rabbits administered with 150 mg/L of zinc as zinc 

sulfate (ZnSO4) in their drinking tap water for 3 

months. A significant decrease in plasma MDA 

concentration and significant increase in the activity of 

antioxidant enzymes (SOD, CAT, and GSH-Px) and 

GSH levels was observed. 

Zinc sulfate supplementation may be a therapeutical 

resource to recover microvascular complications in 

diabetes. Treatment of 100 mg zinc sulfate for 12 

weeks in diabetic patients was well tolerated, 

significantly reduced total cholesterol and triglyceride 

concentrations and increased HDL cholesterol in the 

bloodstream [134]. 

CONCLUSIONS 

In this review, an overview of the various metallic 

compounds which have shown promising results in the 

treatment of diabetes has been presented. It seems that 

good opportunities exist to exploit metal and metal 

based drugs in the discovery and development of 

alternative tool for the prevention of diabetes. Further, 

understanding of the mechanism of action, cellular 

target and toxicological studies are required for their 

therapeutic applications. This area should be essentially 

explored in adequate clinical trials so that diabetes 

related problems can be resolved.  
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