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ABSTRACT
Therapeutic intermittent hypoxia is a non-pharmacological lab-based intervention 
with the demonstrated benefits of ascent to moderate altitude. Depending on the 
dose or severity of therapeutic intermittent hypoxia or high-altitude, hypoxic exposure 
can stabilise master gene regulators to instigate beneficial adaptations. Therapeutic 
intermittent hypoxia has been demonstrated to initiate adaptive phenotypic changes 
such as: decreased sympathetic input with a decrease in systolic blood pressure; 
increased haemoglobin and red blood cell count; altered substrate metabolism to favour 
increased glucose uptake and fatty acid metabolism with decreased fatty acid synthesis; 
increased antioxidant defence; decreased inflammatory cytokines. Such beneficial 
adaptive changes to therapeutic intermittent hypoxia serve not only to diminish the 
impact of cardiovascular pathology but also to increase exercise tolerance.
Several lines of evidence indicate that therapeutic intermittent hypoxia may provide a 
new treatment modality for people affected by heart failure with a reduced ejection 
fraction. This review aims to identify links in the literature between heart failure 
pathophysiology and the beneficial adaptations induced by TIH. 
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Introduction
Epidemiological data demonstrates that Heart Fail-
ure (HF) is increasingly prevalent which places a 
significant cost upon society and the individual. The 
estimated 5-year all-cause mortality from HF with re-
duced ejection fraction (HFrEF) ranges from 56% to 
75% [1,2] and has an estimated global cost of US $ 
108 billion [2]. The cause of death for more than half 
of HFrEF population was “cardiovascular death” [1]. 
HF can result from multiple medical conditions in-
cluding Myocardial Infarction (MI), Ischaemic Heart 
Disease (IHD), and Hypertension (HTN) [3]. In West-
ern countries there is an estimated prevalence of 11% 
for all HF [4]. It can be separated into two separate 
types with different pathophysiologies: HF with a Re-
duced Ejection Fraction (HFrEF) or with a preserved 
ejection fraction (HFpEF). Heart failure with a re-
duced ejection fraction is characterised by impaired 
contraction of the left ventricle (systolic dysfunction) 
and reduced Left Ventricular Ejection Fraction (LVEF) 
with an estimated prevalence of 5.5%. Medical man-
agement of HF has evolved over the last few decades 

with the introduction of pharmaceuticals to treat 
high blood pressure, Beta Blockers (BB), Angioten-
sin-Converting-Enzyme (ACE) inhibitors, aldosterone 
antagonists and diuretics to diminish fluid retention. 
Neprilysin inhibitors (ARNI) have been developed 
which not only treat high blood pressure, such as 
ACE inhibitors, but also induces vascular dilation and 
prolongs the effect of Atrial Naturetic Peptide (ANP) 
and Brain Derived Naturetic Peptide (BNP), which 
assist in compensating for HF. Recently inhibitors of 
Sodium-Glucose Cotransporter 2 (SGLT2) have been 
introduced as one of the “four pillars” of pharmaco-
therapy for HFrEF [5,6]. With the introduction of each 
of these agents we have seen a reduction in mortality 
and morbidity in HF patients [7]. Despite these ad-
vances there is still ongoing high morbidity and mor-
tality for HF patients. 
Nonpharmacological interventions such as cardiac 
rehabilitation, alterations to diet and regular mod-
erate exercise have been shown to be beneficial ad-
juncts to medical therapy in decreasing morbidity 
for HF [8, 9]. There is growing interest in using novel 
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interventions such as doses of Intermittent Hypoxia 
(IH) as a therapy (TIH) to provoke beneficial adaptions 
in cardiovascular and metabolic diseases. In adult hu-
mans, beneficial phenotypic responses to laboratory 
based TIH, at a fixed SpO2, has resulted in diminished 
key cardio-metabolic risk factors, demonstrating the 
therapeutic potential of a specific hypoxic pattern as 
non-pharmacological intervention [10]. In healthy se-
niors TIH resulted in increased haematocrit and red 
blood cell number [11]. In addition, exposure to a fixed 
fraction of inspired oxygen (FiO2) prior to an altitude 
challenge induced anti-inflammatory pathways, dimin-
ished reactive oxygen species production, increased 
antioxidant defence, and unregulated fatty acid me-
tabolism which serve to restrict hypoxia-induced in-
flammation, dyslipidemia as well as regulating redox 
homeostasis [12]. After 10 sessions of TIH, in a healthy 
adult population, significant beneficial changes to me-
tabolism occurred: (i) average arterial glucose was 
diminished by 0.9 mmol L-1 (ii) average Low-Density 
Lipoprotein (LDL) was diminished by 0.5 mmol L-1 re-
sulting in an improved LDL/HDL ratio; and (iii) systolic 
blood pressure was decreased [10]. On a fundamental 
level, there is clear evidence that exposure to hypoxia 
activates Hypoxia Inducible Factor 1 alpha (HIF-1α), a 
transcription factor regulating the expression of over 
1000 genes including an increase in the levels of eryth-
ropoietin (EPO) and Vascular Endothelial Growth Fac-
tor (VEGF) [13]. The expression of these oxygen-sen-
sitive genes not only results in an elevated red blood 
cell number but also in an increased vascular network 
[12,13], both of these hypoxia-induced adaptations are 
expected to benefit HF patients with anaemia. 

Literature Review
Discriminating between involuntary breath-hold-
ing and therapeutic intermittent hypoxia
Previously, the safety and utility of TIH was questioned 
because it was assumed to have similar effects to the 
Intermittent Hypoxia (IH) experienced during involun-
tary breath-holding in either Obstructive Sleep Apnoea 
(OSA) or Central Sleep Apnoea (CSA), both of which 
involve breath holding and hypercapnia. In contrast to 
sleep apnoea, neither IH nor TIH have a hypercapnic 
component. Multiple lines of evidence demonstrate 
that OSA and CSA produce maladaptive systemic re-
sponses such as hypertension and insulin resistance 
[14,15]. Emerging research has demonstrated that 
beneficial adaptive changes can occur in response to 
certain types of hypoxic challenge, depending on the 
dose, duration, or pattern of hypoxia/reoxygenation 
protocols [11,14]. Therapeutic intermittent hypoxia at 
a fixed SpO2 of 85% did not elevate the level of corti-
sol, secretory immunoglobulin A, or cardiac troponin T 

demonstrating the safety of TIH in healthy seniors [11].
A diminished supply of oxygen can result in either 
adaptive and maladaptive change in two distinct states: 
During hypoxaemia induced by OSA and CSA (repre-
senting involuntary breath-holding), where there is a 
lowered partial pressure of oxygen in the blood; while 
during hypoxia which occurs without breath holding, 
there is a diminished oxygenation of tissues [16]. The 
maladaptive outcomes of OSA impairs metabolism as 
well as having a negative impact on cardiac, cognitive, 
and respiratory function [17]. In contrast, the adaptive 
outcomes of exposure to hypoxia include diminished 
cardiovascular risk factors and hypertension [10,14].
However not only do tissues differ in their sensitivity to 
hypoxia due to their individual metabolic requirements 
[18] but also individuals desaturate to a different ex-
tent in response to the same FiO2. Successful applica-
tion of TIH is linked with (i) a standardised target ox-
ygen saturation in the venous (SpO2) or arterial (SaO2) 
circulation by altering FiO2; and (ii) the same duration 
of hypoxic exposure, thus providing an equivalent hy-
poxic dose for all participants. More specifically, the 
dose consists of exposure to the same number of total 
minutes of hypoxia (in dispersed with brief periods of 
normoxia) while maintaining the same mean target for 
SpO2 [11]. 
In contrast, to OSA and CSA, TIH does not have a hy-
percapnic component, nor does it elevate Sympathetic 
Nerve Activity (SNA) [19]. These differences distin-
guish hypoxia generated by involuntary breath-hold-
ing in OSA/CSA from laboratory-based hypoxia admin-
istered in TIH. In addition, TIH lowers cardiovascular 
risk factors by: (i) decreasing fasting glucose levels, 
with changes persisting for up to a month post-ces-
sation of TIH [20]; (ii) lowers circulating lipid levels, 
particularly LDL [10,14]; and (iii) decreased insulin re-
sistance [21].
While it is acknowledged that ongoing inflammation 
results in cardiac dysfunction, the causal relationship 
is not entirely clear, nor is it clear whether the effect 
of inflammation is similar across different heart fail-
ure phenotypes [22]. Patients treated with neurohor-
monal antagonists, specifically angiotensin-converting 
enzyme inhibitors and β-adrenergic receptor block-
ing agents have been shown to have a lower amount 
of circulating pro-inflammatory cytokines, suggest-
ing a causal relationship between inflammation and 
cardiac dysfunction [22]. It has been postulated that 
ongoing inflammation within malfunctioning tissues 
is a para-inflammation, i.e. inflammation that is not a 
direct result of infection or acute injury. Instead, it is 
a sustained tissue injury or a failed downregulation of 
the initial inflammatory response tissue results in an 
inability to restore homeostasis and on-going inflam-
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[13]; (ii) VEGF, stimulating capillary growth [13,24,29]; 
(iii) pathways involved in glucose and lipid metabolism 
[30,31]; and the activation of a number of molecular 
switches that initiate beneficial adaptive change, two 
of which are discussed below. Elevated levels of HIF-
1α shift energy production from oxidative metabolism 
towards glycolytic metabolism, possibly explaining 
the lowered serum glucose post-TIH shown in some 
studies [10,13,32]. Similarly, when the oxygen induced 
breakdown of HIF-1α and HIF-2α is inhibited, by ex-
posure to hypoxia, a decrease in cholesterol and fatty 
acid synthesis is observed [25]. In the same study an 
increase in lipoprotein lipase, and glycolytic enzymes 
was observed when HIF-1α and HIF-2α breakdown 
was inhibited [25]. Therapeutic intermittent hypox-
ia not only increases HIF-1α but also increases nitric 
oxide metabolites and lowers systolic blood pressure 
[32] in hypertensive patients.
Diminished cardiovascular risk factors after 
therapeutic intermittent hypoxia
Elevated glucose and/or lipid levels are risk factors 
for cardiovascular events, and there is evidence that 
exposure to several types of TIH can diminish risk 
factors for cardiovascular events. Treatment with TIH 
can decrease serum glucose post-IH by increasing 
skeletal muscle glucose uptake in humans [20,33]. 
Treatment with moderate regimes of intermittent hy-
poxia increased glucose uptake in skeletal muscle, via 
a multifunctional molecular switch, AMP-activated 
protein kinase (AMPK) activation [34]. In addition, 
during hypoxia there was an increase in skeletal mus-
cle 3-0-methylglucose transport, and an upregulation 
in glucose transporter 4 (GLUT-4) within the skeletal 
muscle plasma membrane, mediated by AMPK [35,36]. 
There is evidence that exposure to TIH results in low-
ered circulating lipid levels [10, 21]. This is important 
because increased LDL levels are associated with in-
creased atherosclerosis [37], a major cardiovascular 
risk factor. Low density lipoprotein is catabolised by two 
separate pathways. The receptor-dependent pathway 
involves LDL binding to apolipoprotein B-100 resulting 
in hepatic endocytosis and breakdown of the LDL mol-
ecule. While the receptor-independent pathway occurs 
in non-hepatic tissues and increases in parallel with an 
elevation in LDL [37]. It has been demonstrated that 
TIH affects lipid levels and has a more pronounced ef-
fect on LDL than HDL [10,12]. The lowered LDL levels 
can be explained in terms of the hypoxia induced sta-
bilization of HIF-1α which lowers cholesterol and fatty 
acid synthesis and increases lipoprotein lipase [25]. A 
study using moderate TIH at an FiO2 of 12% for 4 hrs 
as pre-conditioning, prior to 7 days of hypobaric hy-
poxia at 3500m (FiO2 of 13.5%) showed a reduction in 
LDL levels and changes in several proteins involved in 

mation [23]. 
Comparison of laboratory based hypoxia versus 
ascent to altitude: differences in hypoxic patterns
Laboratory based IH protocols differ in the FiO2, as well 
as the number and duration of daily cycles adminis-
tered to patients [14]. An FiO2 between 9-16% with low 
cycle numbers (3-15 per day), have been shown to ini-
tiate beneficial adaptations. Conversely, severe IH pro-
tocols using an FiO2 of 2-8% had pathological effects 
that were like those reported for OSA/CSA induced IH 
[14]. From a safety perspective, TIH and resultant el-
evation in HIF1 α stabilisation in response to an FiO2 
of 10-12% has been shown to be safe and to have a 
beneficial impact on key cardiovascular risk factors 
such as hypertension, glucose, decreasing sympathetic 
input via an altered vagal tone, lipid levels and lowers 
the formation of atherosclerotic plaque [10]. Other ef-
fects include diminishing inflammation, body weight, 
increasing aerobic exercise capacity, and diminishing 
myocardial injury in ischaemic heart disease as de-
tailed below [10, 12, 13, 24-27]. 
The key differences between ascent to altitude and 
lab based IH are twofold: its duration and the pattern 
of the hypoxic stimulus it provides. Unlike laborato-
ry-based hypoxia, the ascent to altitude has no optional 
periods of reoxygenation so it provides a continuous 
stimulus, which increases in intensity with increased 
altitude. Stabilisation of HIF-1α in response to periods 
of low oxygen (hypoxia) orchestrates the expression 
of oxygen sensitive genes that mediate beneficial ad-
aptations to hypoxia [28]. It was hypothesised that the 
repeated presentation of a hypoxic stimulus, as seen 
in TIH may be needed to provoke adaptive changes in 
phenotype, intermittent but not chronic hypoxia, of the 
same duration, resulted in increased haemopoesis in 
healthy seniors, like that achieved by acclimatization 
to altitude [11]. While the mean SpO2 was set to 85% 
with the same total minutes in hypoxia for both hypox-
ic patterns, there were two key differences between 
the intermittent and continuous hypoxic pattern that 
could potentially affect adaptive phenotypic change: (i) 
the nadir of SpO2 was lower in intermittent hypoxia to 
make up for the periods of reoxygenation; and/or (ii) 
repeated reoxygenation during IH would block the sta-
bilisation of HIF-1α in a cyclic pattern corresponding 
to desaturation of tissues in the alternating hypoxic in-
tervals.
Benefits of stabilising hypoxia inducible factor 
1α, in response to TIH
Exposure to normobaric hypoxic patterns increas-
es the level of HIF-1α, which has been demonstrated 
to regulate of over 1000 genes, including but are not 
limited to: (i) EPO, resulting in increased haemopoesis 
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endothelial nitric oxide synthase (eNOS) increasing 
the production of Nitric Oxide (NO) production and its 
bioavailability [43]. Nitric oxide is a crucial to normal 
endothelial function unless its bioavailability is dimin-
ished by inflammation, oxidative stress or lipid infil-
tration [43]. The diminished bioavailability of NO and 
subsequent impaired vasoconstriction is an early stage 
of atherosclerosis. Furthermore, AMPK is crucial for 
normal endothelial function and is protective against 
atherosclerosis and arterial calcification [36,43].
The formation of AMPK is instrumental in the regu-
lation of fatty acid uptake and metabolism with in-
creased activity resulting in decreased fatty acid syn-
thesis and the increased oxidation of fatty acids [44] 
via phosphorylation. More specifically, the oxidation of 
fatty acids and their biosynthesis are regulated by two 
derivatives of acetyl coenzyme A carboxylase (alpha 
ACC1 and beta ACC2) which are both phosphorylated 
by AMPK which decreased fatty acid synthesis as well 
as fatty acid oxidation, with the subsequent improve-
ment in lipid profile [44]. The activation AMPK inhibits 
the synthesis of TAGs resulting in a reduction in lipid 
storage. Finally, AMPK increases the catabolism of fat-
ty acids, and promotes intracellular transport of fatty 
acids to allow greater mitochondrial oxidation [36]. As 
such hypoxia induced AMPK levels result in lipid re-
duction and a protective state against metabolic syn-
drome [42,44]. Taken together these AMPK regulated 
mechanism may explain why TIH decreased LDL and 
an increased HDL concentrations [10]. In conjunction 
with lowering the level of LDL, a risk factor for athero-
sclerosis, HIF-1α lowers the formation of atheroscle-
rotic plaque in animal models [12,13,24-27].
Evidence has confirmed that AMPK acts as a sensor 
of cellular energy that can be activated through di-
verse pathways, one of which is in response to hypox-
ia [36,43,45]. While it is known that hypoxic exposure 
increases AMPK activation [34], HIF-1α has been pos-
ited to regulate AMPK activation, via the coupling of 
HIF-prolyl-4-hydroxylases with Ca2+, but this is contro-
versial [45]. Elevation in AMPK levels has discreet ac-
tions upon metabolic regulation and ultimately health. 
Lipid and glucose metabolism and homeostasis are dis-
cussed above. Other areas that are affected by elevated 
AMPK include, inflammatory regulation, mitochondrial 
function, vascular and endothelial function, and it has 
been shown to exert protective effects on various con-
ditions including cardiomyopathies and metabolic syn-
dromes [36,43,44]. 
Reactive Oxygen Species (ROS) are produced as a 
by-product of normal cell function [36]. Hyperlipi-
daemia, insulin resistance, obesity, inflammation, and 
hyperglycaemia all cause abnormally elevated levels 
of ROS and subsequent oxidative stress [36]. As a re-

lipid regulation [12]. The Apolipoprotein A1 (Apo A1) 
component of HDL was increased compared to base-
line measurements post-IH and on day 7 at 3500m. The 
levels of apolipoprotein B-100 (Apo B-100), involved in 
the LDL degradation pathway, increased, or decreased 
proportionately in relation to LDL levels [12]. The lev-
els of Apo B-100 and LDL were found to decrease in 
response to TIH and hypobaric hypoxia [12,37]. These 
tandem changes in HDL and LDL would beneficially 
lower the LDL to HDL ratio, representing a healthier 
state. In addition, Paraoxonase 1 (PON1), an enzymatic 
component of HDL, with significant anti-atherosclerot-
ic properties, was significantly increased post-IH ex-
posure [12]. While elevated HIF-1α shifts energy der-
ivation from oxidative metabolism towards glycolytic 
metabolism, the concomitant increase in AMPK also 
stimulates glycolytic enzymes, which may contribute to 
the lowered serum glucose level observed in hypoxia 
studies [13,36].
The metabolite AMPK is activated through multiple 
pathways, one of the most recognised being hypoxia 
[36]. It appears to be integral to glucose metabolism 
and deficiencies in AMPK are associated with arryth-
mias and hypertrophic cardiomyopathies [36]. Insulin 
levels have been found to either increase or decrease 
in response to hypobaric hypoxia [38,39]. It is unclear 
whether insulin is responsible for the observed re-
duction in serum glucose observed during hypobaric 
hypoxia and TIH. in addition, TIH has been shown to 
result in a reduction in both fasting glucose levels and 
post prandial glucose levels [21]. Type 2 diabetes melli-
tus (T2DM) and glucose variability are both known risk 
factors for the development of coronary artery disease 
[40,41], as such TIH could be a potential treatment mo-
dality to diminish cardiovascular risk factors. 
The elevation of AMPK levels in response to exposure 
to high altitudes [12,42] and acts as a molecular switch 
in key pathways including but not restricted to (i) en-
dothelial cell function; (ii) non-NOS vasodilation; (iii) 
the metabolism of glucose; (iv) the metabolism of lip-
ids; sensing cellular energy; (vi) redox sensor; and (vii) 
mitochondrial quality control. 
The vasodilation of arteries, regulation of inflam-
mation and proliferation of Vascular Smooth Muscle 
(VSM) was demonstrated to be governed by AMPK, 
[36]. Activation of AMPK relaxes VSM by lowering Ca2+ 
and by reducing the sensitivity of the arterial contrac-
tile machinery to Ca2+ [36]. These two AMPK governed 
mechanisms are independent of exogenous Nitric Ox-
ide (NO) or the NO produced by the vascular endothe-
lium (eNOS) [36]. Activation of AMPK protects against 
vascular calcification and exerts antimigratory and an-
tiproliferative actions in vascular smooth muscle cells 
[36]. In addition, AMPK activation directly activates 



Distinguishing Therapeutic Hypoxia from Pathogenic Hypoxia: Benefits for Cardiac Patients 

5www.jmolpat.com

are reduced in size when exposed to IPC [13,24,25]. 
In animal models, exposure to localised ischaemia re-
sults in collateral blood flow and vascular remodelling 
via induced IPC, it lowers the extent of damage from 
ischaemic insults [13, 27]. The induction of HIF-1α 
appears to be integral to the process of ICP as stabili-
sation of HIF-1α results in smaller myocardial infarcts 
[26]. Animal models show that complete knockout of 
HIF-1α (HiF-1α−/−) is not compatible with life. A par-
tial knockout of HIF-1α+/−  were viable [13]. The vas-
cular changes from ICP did not occur in HIF-1α partial 
knockouts showing HIF-1α is necessary for ICP. HIF-1α 
stabilisation in heart failure patients results in the ac-
tivation of VEGF to promote neovascularisation [13]. 
Preconditioning with TIH in animal models led to a re-
duction in the size of myocardial infarctions occurring 
in response to ischemia-reperfusion injury (I-R) [13, 
24, 27].  
While multiple factors are involved in protection from 
IPC, including the production of local hormones (auta-
coids), HIF-1α is strongly implicated as the master reg-
ulator of adaptive changes in phenotype in response to 
oxygen limitation [13,24,48].  In fact, hypoxia-induced 
stabilisation of HIF-1α has been shown to significantly 
diminish I-R injuries [26]. The duration of the time in-
terval between hypoxic preconditioning and conferred 
protection varied between studies, with one study 
showing a benefit at 24 hrs post-preconditioning but 
not at 30 minutes [24]. Other sources suggest that both 
an immediate and a delayed phase of hypoxia-induced 
protection occurs against subsequent ischaemic inju-
ries [13]. There is an immediate form of IPC that lasts 
for up to 2-3 hours following a post-hypoxic stimulus. 
This immediate effect subsides and is then followed by 
a second delayed protective effect occurring within 12-
24 hours and may last up to 72 hours. These two pro-
tective phases of IPC are thought to represent different 
signalling mechanisms [48]. The evidence and under-
lying molecular mechanisms involved in cardio-pro-
tection by IPC has been extensively reviewed by Mal-
let and colleagues [49] and since it involves a cycle of 
hypoxia followed by reoxygenation, it shares common 
pathways with TIH. 
To assess the role of HIF in cardiac protection: mice 
with a heterozygous knockout allele at the HIF locus, 
were exposed to IPC prior to an induced MI. This sub-
group of mice experienced no protective effects of ICP 
and had similar infarct sizes and decline of cardiac 
function as mice that were not preconditioned with 
IPC [24], providing evidence that a HIF1 α cascade is 
needed to provide protection from an induced MI. In-
terestingly, mice pre-treated with an infusion of EPO, 
then subjected to I-R had a preservation of myocardi-
um compared to controls [24], confirming that one of 

sponse to many pro-atherosclerotic stimuli, mitochon-
dria become dysfunctional, leading to a direct increase 
in mitochondrial ROS generation [36,43]. Increased 
oxidative stress and inflammation result in endotheli-
al dysfunction, which is considered a critical precursor 
to atherosclerosis via numerous mechanisms [43]. The 
metabolite AMPK acts as a redox sensor in a feedback 
loop, in which increased levels of ROS directly activate 
AMPK [45]. Once activated AMPK maintains redox sta-
tus by inhibiting the production of oxidants, modulat-
ing antioxidant gene expression increasing the cellular 
antioxidant potential, and by regulating mitochondrial 
homeostasis [36,43]. Over expression of AMPK or the 
in vivo activation of it has been demonstrated to nor-
malise endothelial function in diabetic rats. Upregu-
lation of AMPK also mitigates superoxide generation 
through the uncoupling of Endothelial Nitric Oxide 
Synthase (eNOS) [36]. However, AMPK can become dis-
ordered in patients with hypertension or T2DM, dimin-
ishing its capabilities to normalise endothelial dysfunc-
tion as well as inflammation [36,46].
Signalling via AMPK also plays an important role in 
response to changes in energy expenditure or cellular 
energy stress as well as its role in the quality control 
of mitochondria. Intracellular mitochondrial are regu-
lated via biogenesis, to either form new mitochondria 
or to remove damaged mitochondria via autophagy/
apoptosis to remove damaged mitochondria [36,43]. 
In addition, mitochondrial metabolism is predomi-
nantly regulated by AMPK acting in conjunction with 
transcription factors from the peroxisome prolifera-
tor-activated receptor gamma coactivator (PGC) fami-
ly,  [43,46], which act as molecular switches not only 
to alter mitochondria plasticity but also their fate. Mi-
tochondrial biogenesis is also regulated by the interac-
tion between AMPK and PGC1α to increase mitochon-
drial number in response to demand [43]. Conversely, 
during cellular energy stress AMPK activates the unc-
51-like autophagy activating kinase 1 (UKL1) directly 
and indirectly through the inhibition of mammalian 
target of rapamycin complex 1 (mTORC) resulting in 
the removal of damaged mitochondria and cellular 
components via autophagy, providing an important 
component of mitochondrial quality control [43,46]. In 
summary, AMPK activation effectively maintains cellu-
lar and mitochondrial homeostasis.
Ischaemic preconditioning
Another promising therapeutic application of TIH is in 
preconditioning the human body to withstand a subse-
quent hypoxic event, termed Ischaemic Precondition-
ing (IPC). Whole body ischemic and hypoxic condition-
ing can have beneficial protective effects on multiple 
organ systems even while temporarily stopping blood 
flow to a specific organ [47]. Myocardial Infarcts (MI) 
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cause mortality, showing that a nuanced and targeted 
approach to tackling inflammation in cardiovascular 
disease is required [55,57,58]. Targeted reduction in 
inflammatory pathways in heart failure has been re-
viewed elsewhere [22]. Recognition of inflammation’s 
causal role in the pathogenesis of atherosclerosis and 
IHD, has led to an increasing body of literature investi-
gating various anti-inflammatory agents and their im-
pact on atherosclerosis [59].
Patients with ischaemic or non-ischaemic heart failure 
have been shown to be in a state of sustained myocar-
dial inflammation [22]. One clinical trial identified an 
elevated C-reactive Protein (CRP) in 57% of all patients 
with HFrEF [60]. Similarly pro-inflammatory cyto-
kines and chemokines can be identified in the hearts 
of individuals with cardiomyopathies, but not in nor-
mal hearts [22]. The exact mechanism of persistent 
inflammation in HFrEF is not entirely clear, nor is it 
clear whether it is causal or the consequence of HF; 
especially considering many risk factors for HFrEF, in-
cluding diabetes, HTN and CKD are inherently proin-
flammatory [22,60]. Neurohormonal activation and 
haemodynamic overload are implicated as contrib-
uting to the proinflammatory state, as resolution of 
these states through medical intervention results in a 
lowering of inflammatory markers [22]. The level of in-
flammation appears to be important to heart function. 
The pro-inflammatory cytokines TNF α, interleukin 6 
(IL-6) and interleukin 18 (IL-18) have been shown to 
weaken the force of cardiac contraction [61]. Targeted 
inhibition of specific proinflammatory cytokines have 
shown mixed results [60,61]. While the role of inflam-
matory markers in the response to myocardial injury 
are complex and not fully understood, it has been pro-
posed that various components of the inflammatory 
response have dual functionality, both in promoting 
and regulating inflammation depending on the recep-
tor activation [62]. This may explain why inhibition of 
specific cytokines show mixed results. Hearts with his-
tological evidence of inflammation, that when treated 
with prednisolone, do experience an increase in their 
LVEF, suggesting systemic reduction in inflammation 
is beneficial in HFrEF [22]. Since inflammation is a 
contributing factor to poor LV function and outcomes 
in patients with IHD and HFrEF, it is important to as-
sess any impact that TIH may have upon inflammatory 
markers as well as markers of oxidative stress. Recent 
studies have focused on TIH which uses evidence based 
hypoxic protocols in clinical settings, as a therapeutic 
modality for patients [10,11,63]. Conversely, laborato-
ry-based continuous hypoxia (Fi02 <10%), can induce 
elevated inflammatory markers [14], increased inflam-
matory markers also result from a transient sojourn 
at high altitudes (>3000m above sea level) [64], while 

the key signals triggered by HIF1 α, prevented ischemia 
reperfusion injury. Ischaemic preconditioning does not 
require a local stimulus to provide an adaptive advan-
tage. This phenomenon labelled “remote ischaemic 
conditioning” was initially identified when a hypoxic 
stimulus is applied to a single coronary artery resulted 
in protection in other coronary arteries [50]. Remote 
ischaemic conditioning has further been shown to be 
protective when the ischaemic stimuli is not provided 
to the target organ i.e. hypoxia of a limb or kidneys pro-
vide an adaptive advantage to the heart [48]. Remote 
ischaemic conditioning appears to be reliant on neuro-
hormonal pathways to provide a systemic benefit [48]. 

Discussion
A role for TIH in coronary artery disease
The development of coronary artery disease is mul-
tifactorial, with the major risk factors being uncon-
trolled hypertension, hyperlipidaemia, diabetes, smok-
ing, physical inactivity, and advancing age [51]. The 
significant contribution our society’s disease burden, 
the primary, secondary, and tertiary prevention of Isch-
emic Heart Disease (IHD) is an area of intense research. 
Management of established IHD is directed towards 
managing cardiovascular risk factors through lifestyle 
modification and directed medical therapy with the 
goal of bringing IHD risk factors back into the normal 
range [51]. 
Inflammation and increased oxidative stress are rec-
ognised as major contributors to the development of 
IHD [52,53]. Hypoxia, at finely tuned doses, can turn 
down the expression of inflammatory genes making 
TIH an ideal candidate for a novel approach to thera-
peutic intervention [54]. It has long been known that 
patients with chronic proinflammatory diseases such 
as rheumatoid arthritis (RA), Systemic Lupus Erythe-
matosus (SLE) and psoriasis all have increased car-
diovascular risk compared to the normal population. 
Moreover, when patients with RA are treated with 
anti-inflammatory agents, e.g., monoclonal antibodies 
targeting Tumour Necrosis Factor Alpha (TNF α), they 
experience a reduction in their vascular event rates 
[53]. In a similar fashion, the antioxidant enzyme glu-
tathione perioxidase-1 has been shown to have a pos-
itive correlation with increased cardiovascular event-
free survival [52]. Immune modulation to treat IHD is 
not without risk though. Colchicine, a medication long 
used to suppress inflammation through tubulin sup-
pression and a resultant down regulation of multiple 
inflammatory pathways has recently been investigated 
as an adjunct treatment for acute IHD [55,56]. Initial 
research showed promising results for reduced cardio-
vascular events, however subsequent investigations 
revealed that this came at the price of an increased all-
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in healthy seniors [11], either TIH may have elevated 
EPO directly via stabilisation of the HIF1 α pathway or 
it may have provided sufficient stress to turn on a non-
EPO dependent pathway, the stress-erythropoiesis 
pathway described by Kim and colleagues [70]. 
Raised inflammatory markers were associated with 
both true iron deficiency and functional iron deficiency 
in chronic HF patients [69]. Heart failure patients often 
present with chronic inflammation, cytokines such as 
TNF α and IL-1β in conjunction with chemokines can 
be isolated in HFrEF patients but are rarely found in 
non-failing hearts [22]. Similarly, T lymphocytes and 
NK cells are observed in histological specimens from 
HFrEF patients in the absence of any alternative cause 
[22]. Typically, HF is associated with an increase in 
CRP and multiple pro-inflammatory cytokines includ-
ing TNF α and IL-6 [68]. Other effects of increased TNF 
α and interleukin- 6 that contribute to anaemia are 
not only an inhibition of EPO production but also the 
suppression of erythroid progenitor cell proliferation 
within bone marrow [68]. Furthermore, HF causes di-
minished renal perfusion and the upregulation of HIF1 
α, resulting in an upregulation of EPO. However, the 
increase in EPO is often lower than expected for the 
degree of anaemia, suggesting a blunted production 
of EPO in HF [68] which would maintain the anaemic 
state. The documented increase in EPO in response to 
TIH [71]. and the shift in circulating cytokines towards 
a more anti-inflammatory state [12] suggest that TIH 
could help ameliorate anaemia in the HF population. 
Current therapy for HFrEF involves use of ACEI/an-
giotensin II receptor blocker, ARNI, BB’s, and miner-
alocorticoid receptor antagonists, all of which have 
been shown to independently decrease mortality and 
increase LVEF [7,72]. Recently SGLT2 inhibitors have 
also been shown to reduce mortality, morbidity, and 
hospitalisation [5,6]. TIH-induced increases in LVEF 
have been documented in rodent models. This increase 
in LVEF has been demonstrated in both normal mice, 
as well as mice with heart failure secondary to over-ex-
pression of TNF α [73]. The documented increase in 
EPO [72], the increase in red blood cells in response to 
TIH [11] is expected to ameliorate or reverse anaemia 
in the HF population. This is further supported by ev-
idence that TIH significantly increased red blood cell 
count (7.7% at day 5 of treatment compared to base-
line) in healthy seniors compared to their sham con-
trols, without any increase in stress markers such as 
cardiac troponin T and cortisol [11].
Training under hypoxic conditions has been shown 
to be beneficial to athletes, improving performance 
and exercise capacity due to mechanisms explained 
elsewhere [74]. One of the benefits of TIH is the im-
provement of non-athletes’ exercise capacity [75]. 

intermittent hypoxia with a modest Fi02 decreased in-
flammatory markers and has numerous therapeutic ef-
fects on metabolism and haemodynamics, as discussed 
above [10,11,64]. Furthermore, exposure to continu-
ous hypobaric hypoxia induced by prolonged sojourns 
at extremely high altitudes, can result in the elevation 
of circulating proinflammatory cytokines leading to al-
titude sickness with vascular leakage and oedema [65].  
Ascent to 3000m and 4000m above sea level are re-
quired for the severe manifestations of pulmonary and 
cerebral oedema respectively, while early signs such as 
headaches and nausea can occur between 2500-3000m 
[66]. A study designed to assess the utility of precondi-
tioning athletes with IH prior to high altitude training 
found a transient increase in acute-phase reactants 
including CRP, serum amyloid A-1 and alpha-1-acidg-
lycoprotein 2 [64]. Conversely, athletes who were pre-
conditioned with IH prior to traveling to altitudes, ex-
perienced a more rapid decline in their inflammatory 
markers [64]. At sea level, an overall shift in circulatory 
from pro-inflammatory to anti-inflammatory cytokine 
was achieved in participants who exercised during nor-
mobaric hypoxia (FiO2 of 13.5%) compared to controls 
that exercised in room air (FiO2 of 21%) [67].
Potential adaptive advantage of TIH in heart  
failure patients
Within the heart failure population approximately 50% 
of hospitalised patients and 30% of stable patients 
have anaemia (hemoglobin <13 g/dL in men and <12 
g/dL in women) [68]. Anaemia in HF is independently 
associated with increased hospitalisations and mortal-
ity [68]. Anaemia in HF appears to be multifactorial, 
with true iron deficiency and functional iron deficiency 
appear to play a large role. Patients without objective 
anaemia appear to have lower haemoglobin concen-
trations when compared to control groups, and up to 
30% may have underlying iron deficiency, which is a 
predictor of reduced survival [69]. Even among iron 
replete patients with heart failure, worsening classifi-
cation in the New York Heart Association (NYHA) and 
exercise tolerance have been associated with a reduc-
tion in circulating ferritin levels [69]. Amongst anaemic 
HF patient’s, the predictors of having a lower haemo-
globin included, elevated ESR, female gender and low 
transferrin saturations. As functional class worsens the 
prevalence of iron deficiency amongst this population 
increases. NYHA class III and class IV patients have iron 
deficiency rates of 72% and 100% respectively with 
anaemia of chronic disease being the most common 
cause [69]. It is unclear if iron deficiency and anaemia 
are a cause of or a result of worsening NYHA functional 
class and disease status, an area of intense ongoing re-
search. Treatment with TIH has been shown to elevate 
red blood cell numbers and elevate haemoglobin levels 
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(iv) increased antioxidant defence; (v) decreasing sym-
pathetic input via altered vagal tone; (vi) increased 
haemoglobin and red blood cell count, EPO and VEGF; 
and (vii) increased anti-inflammatory cytokines; and 
(viii) increased exercise tolerance.
The documented changes in both cardiovascular risk 
factors, exercise tolerance, circulating inflammatory 
markers together with the elevation of red blood cell 
number and haemoglobin levels pose potential bene-
fits to be gained in heart failure patients. To date, there 
have been no trials in this area assessing whether TIH 
has similar results in the HF populace compared to 
other groups. Similarly, there is no assessment of the 
effects TIH on major adverse cardiovascular events or 
all-cause mortality in any population. Overall TIH pres-
ents a promising non-pharmacological modality that is 
worth exploring in the heart failure patient.
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